Functions of Time

If acceleration of a moving particle is variable, it changes with time and can be expressed as a function of time. In the same way, velocity and displacement can also be expressed as functions of time.

These velocity-time graphs represent the motion of a particle travelling in a straight line:

Rates of Change

Velocity is the rate of change of displacement.
If the displacement, s, is expressed as a function of t, then the velocity, v, can be expressed as

$$
v=\frac{d s}{d t}
$$

Acceleration is the rate of change of velocity.

If the velocity, v, is expressed as a function of t, then the acceleration, a, can be expressed as

$$
a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

You can use calculus to determine local maximum and minimum values of displacement, velocity and acceleration. Be careful: the greatest speed of object may be a local maximum velocity or a local minimum (if velocity is negative). Also check speed at the start and end of the timeframe, as these may also exceed the speeds at the turning points.

Integration is the reverse process to differentiation:

- integrate acceleration with respect to time to find velocity
- integrate velocity with respect to time to find displacement

In summary:

Differentiate $|$| displacement | $=s=\int v \mathrm{~d} t$ |
| :---: | :---: |
| $\frac{\mathrm{~d} s}{\mathrm{~d} t}=$ | velocity |
| $\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=$ | acceleration |

