AS Mechanics - Chapter 8 - Modelling in Mechanics

Mathematical models can be constructed to simulate real-life situations.

Modelling assumptions can be used to simplify your calculations.

These are some common models and modelling assumptions you need to be familiar with:

Model	Modelling assumptions
Particle – Dimensions of the object are negligible.	 mass of the object is concentrated at a single point rotational forces and air resistance can be ignored
Rod – All dimensions but one are negligible, like a pole or a beam.	 mass is concentrated along a line no thickness rigid (does not bend or buckle)
Lamina – Object with area but negligible thickness, like a sheet of paper.	mass is distributed across a flat surface
Uniform body – Mass is distributed evenly.	 mass of the object is concentrated at a single point at the geometrical centre of the body – the centre of mass
Light object – Mass of the object is small compared to other masses, like a string or a pulley.	 treat object as having zero mass tension the same at both ends of a light string
Inextensible string – A string that does not stretch under load.	acceleration is the same in objects connected by a taut inextensible string
Smooth surface	assume that there is no friction between the surface and any object on it
Rough surface – If a surface is not smooth, it is rough.	objects in contact with the surface experience a frictional force if they are moving or are acted on by a force
Wire - Rigid thin length of metal.	treated as one-dimensional
Smooth and light pulley – all pulleys you consider will be smooth and light.	pulley has no masstension is the same on either side of the pulley
Bead - Particle with a hole in it for threading on a wire or string.	 moves freely along a wire or string tension is the same on either side of the bead
Peg – A support from which a body can be suspended or rested.	dimensionless and fixedcan be rough or smooth as specified in question
Air resistance – Resistance experienced as an object moves through the air.	usually modelled as being negligible
Gravity – Force of attraction between all objects. Acceleration due to gravity is denoted by g . $g = 9.8 \text{ m s}^{-2}$	 assume that all objects with mass are attracted towards the Earth Earth's gravity is uniform and acts vertically downwards g is constant and is taken as 9.8 m s⁻², unless otherwise stated in the question

<u>Units</u>

The base SI units most commonly used in mechanics are:

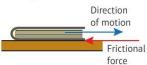
Quantity	Unit	Symbol
Mass	kilogram	kg
Length/Displacement	metre	m
Time	second	S

Vector and Scalar Quantities

A vector is a quantity which has both magnitude and direction. Vectors can be positive or negative.

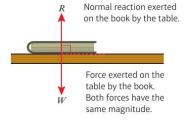
Vector quantity	Definition	Unit
Displacement	Distance in a particular direction	metre (m)
Velocity	Rate of change of displacement	metres per second (ms ⁻¹)
Acceleration	Rate of change of velocity	metres per second per second (ms ⁻²)
Force/Weight	Described by magnitude, direction, point of application	newton (N)

A scalar quantity has magnitude only. Scalar quantities are always positive.

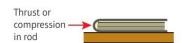

Scalar quantity	Definition	Unit
Distance	Measure of length	metre (m)
Speed	Measure of how quickly a body moves	metres per second (ms ⁻¹)
Time	Measure of ongoing events taking place	second (s)
Mass	Measure of the quantity of matter contained in an object	kilogram (kg)

Distance is the magnitude of the **displacement** vector, and **speed** is the magnitude of the **velocity** vector.

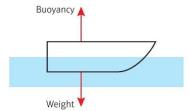
Forces


These **force diagrams** show some of the most common forces you will encounter in mechanics:

- The **weight** (or gravitational force) of an object acts vertically downwards.
- The normal reaction is the force which acts perpendicular
 to a surface when an object is in contact with the surface.
 In this example the normal reaction is due to the weight of
 the book resting on the surface of the table.
- The friction is a force which opposes the motion between two rough surfaces.



 If an object is being pulled along by a string, the force acting on the object is called the **tension** in the string.



 If an object is being pushed along using a light rod, the force acting on the object is called the **thrust** or **compression** in the rod.

 Buoyancy is the upward force on a body that allows it to float or rise when submerged in a liquid. In this example buoyancy acts to keep the boat afloat in the water.

 Air resistance opposes motion. In this example the weight of the parachutist acts vertically downwards and the air resistance acts vertically upwards.

