Definitions and Notation

A sequence is a set of numbers in a given order.

The letter *u* is used to denote a **term** in a sequence, with a subscript denoting its position in the sequence:

 u_1 , u_2 , u_3 , ... , u_n with general term u_k

Sequences are defined algebraically in two ways:

Deductively – position-to-term: $u_k = 3k + 1$ (this is the same as "nth term")**Inductively** – term-to-term: $u_{k+1} = u_k + 3$ and $u_1 = 4$ ("start at 4 and add 3 each time")

Both the above examples describe the sequence 4, 7, 10, 13, ...

A sequence defined inductively always has a **recurrence relation** of the form $u_{n+1} = f(u_n)$

A series is the sum of the terms in a sequence.

The Greek capital letter "**Sigma**" is used to signify a sum. You write it as Σ , with limits on the bottom and top to show which terms you are summing. For example:

$$\sum_{r=1}^{20} 5r = 5 \times 1 + 5 \times 2 + 5 \times 3 + \dots + 5 \times 20$$

Types of Sequence

Arithmetic: Terms increase (or decrease) by the addition of a fixed amount.

5, 8, 11, 14, 17 is arithmetic, with **common difference** 3.

Geometric: Terms are multiplied by a fixed amount to give the next term.

10, 20, 40, 80, 160 is geometric, with common ratio 2.

Periodic: A sequence which repeats itself at regular intervals.

2, 4, 6, 8, 2, 4, 6, 8, 2, 4, 6, 8 is periodic, with **period** 4.

Oscillating: A sequence whose terms lie alternately above and below a middle value.

6, 4, 6, 4, 6, 4 oscillates with **middle value** 5.

Convergent: A sequence which tends toward a particular value.

8, 4, 2, 1, $\frac{1}{2}$, $\frac{1}{4}$ is convergent, converging towards zero

Arithmetic Sequences and Series

In an arithmetic sequence, there is a constant difference between consecutive terms.

a is used to denote the first term, *d* is the common difference and *n* is the number of terms in the sequence.

The formula for the *n*th term of an arithmetic sequence is $u_k = a + (n-1)d$

The sum of the first *n* terms of an **arithmetic series** is given by $S_n = \frac{n}{2} [2a + (n-1)d]$

This can also be written, more intuitively, as $S_n = \frac{n}{2}(a + l)$

Geometric Sequences and Series

In a geometric sequence, there is a common ratio between consecutive terms.

a is used to denote the first term, *r* is the common ratio and *n* is the number of terms in the sequence.

The common ratio r can be calculated by $\frac{u_{n+1}}{u_n}$

The formula for the *n*th term of a geometric sequence is $u_n = ar^{n-1}$

The sum of the first *n* terms of a **geometric series** is given by $S_n = \frac{a(1-r^n)}{1-r}$, $r \neq 1$ or $S_n = \frac{a(r^n-1)}{r-1}$, $r \neq 1$

A geometric series is **convergent** if and only if |r| < 1

The sum to infinity of a geometric series is given by $S_n = \frac{a}{1-r}$