Definitions and Notation

A sequence is a set of numbers in a given order.

The letter u is used to denote a term in a sequence, with a subscript denoting its position in the sequence:

$$
\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}, \ldots, \boldsymbol{u}_{\boldsymbol{n}} \quad \text { with general term } \boldsymbol{u}_{\boldsymbol{k}}
$$

Sequences are defined algebraically in two ways:

Deductively - position-to-term:	$u_{k}=3 k+1$	(this is the same as " nth term")
Inductively - term-to-term:	$u_{k+1}=u_{k}+3$ and $u_{1}=4$	("start at 4 and add 3 each time")

Both the above examples describe the sequence $4,7,10,13, \ldots$

A sequence defined inductively always has a recurrence relation of the form $\boldsymbol{u}_{\boldsymbol{n + 1}}=\boldsymbol{f}\left(\boldsymbol{u}_{\boldsymbol{n}}\right)$
A series is the sum of the terms in a sequence.

The Greek capital letter "Sigma" is used to signify a sum. You write it as \sum, with limits on the bottom and top to show which terms you are summing. For example:

$$
\sum_{r=1}^{20} 5 r=5 \times 1+5 \times 2+5 \times 3+\ldots+5 \times 20
$$

Types of Sequence

Arithmetic: Terms increase (or decrease) by the addition of a fixed amount.
$5,8,11,14,17$ is arithmetic, with common difference 3 .

Geometric: Terms are multiplied by a fixed amount to give the next term.
$10,20,40,80,160$ is geometric, with common ratio 2 .
Periodic: \quad A sequence which repeats itself at regular intervals.
$2,4,6,8,2,4,6,8,2,4,6,8$ is periodic, with period 4 .
Oscillating: A sequence whose terms lie alternately above and below a middle value.
$6,4,6,4,6,4$ oscillates with middle value 5 .

Convergent: A sequence which tends toward a particular value.
$8,4,2,1, \frac{1}{2}, \frac{1}{4}$ is convergent, converging towards zero

Arithmetic Sequences and Series

In an arithmetic sequence, there is a constant difference between consecutive terms.
a is used to denote the first term, d is the common difference and n is the number of terms in the sequence.

The formula for the nth term of an arithmetic sequence is $\boldsymbol{u}_{\boldsymbol{k}}=\boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}$

The sum of the first n terms of an arithmetic series is given by $\boldsymbol{S}_{\boldsymbol{n}}=\frac{\boldsymbol{n}}{\mathbf{2}}[\mathbf{2 a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}]$

This can also be written, more intuitively, as $\boldsymbol{S}_{\boldsymbol{n}}=\frac{\boldsymbol{n}}{2}(\boldsymbol{a}+\boldsymbol{l})$

Geometric Sequences and Series

In a geometric sequence, there is a common ratio between consecutive terms.
a is used to denote the first term, r is the common ratio and n is the number of terms in the sequence.

The common ratio r can be calculated by $\frac{\boldsymbol{u}_{\boldsymbol{n}+\boldsymbol{1}}}{\boldsymbol{u}_{\boldsymbol{n}}}$

The formula for the nth term of a geometric sequence is $\boldsymbol{u}_{\boldsymbol{n}}=\boldsymbol{a r} \boldsymbol{r}^{\boldsymbol{n}-\mathbf{1}}$

The sum of the first n terms of a geometric series is given by $\boldsymbol{S}_{\boldsymbol{n}}=\frac{\boldsymbol{a}\left(\mathbf{1}-\boldsymbol{r}^{\boldsymbol{n}}\right)}{\mathbf{1}-\boldsymbol{r}}, r \neq 1$ or $\boldsymbol{S}_{\boldsymbol{n}}=\frac{\boldsymbol{a}\left(\boldsymbol{r}^{\boldsymbol{n}}-\mathbf{1}\right)}{\boldsymbol{r}-\mathbf{1}}, r \neq 1$

A geometric series is convergent if and only if $|r|<1$
The sum to infinity of a geometric series is given by $\boldsymbol{S}_{\boldsymbol{n}}=\frac{\boldsymbol{a}}{\mathbf{1}-\boldsymbol{r}}$

