- A random variable is a variable whose value depends on a random event
- The variable is discrete if it can only take certain numerical values
- The variable is random if the outcome is not known until the experiment is carried out
- The range of values that a random variable can take is called its sample space
- A probability distribution fully describes the probability of any outcome in the sample space

Discrete random variables are often denoted with an upper-case letter such as X.

The particular values the variable can take are denoted with lower-case letters, often *x* or *r*.

For example, the notation "P(X = r) = 0.3" means "the probability that the variable X takes the value r is 0.3"

The sum of the probabilities of all outcomes of an event add up to 1. For a random variable X, we can write

$$\sum P(X=x) = 1 \qquad \text{for all } x$$

If the probabilities are given in terms of a constant *k*, you can find the value of *k* by equating the sum of the probabilities to one and solving the resulting equation.

Probability distributions can be given in three forms, as in the example below:

1. Probability mass functions: $P(X = x) = \frac{x}{10}$ for x = 1, 2, 3, 4

2. Tables:	:
------------	---

x	1	2	3	4
P(X = x)	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$

3. Diagrams:

If the probabilities for all possible values of x are equal, then the distribution is a **discrete uniform distribution**.