- A random variable is a variable whose value depends on a random event
- The variable is discrete if it can only take certain numerical values
- The variable is random if the outcome is not known until the experiment is carried out
- The range of values that a random variable can take is called its sample space
- A probability distribution fully describes the probability of any outcome in the sample space

Discrete random variables are often denoted with an upper-case letter such as X.

The particular values the variable can take are denoted with lower-case letters, often x or r.

For example, the notation " $\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{r})=\mathbf{0 . 3}$ " means "the probability that the variable X takes the value r is 0.3 " The sum of the probabilities of all outcomes of an event add up to 1 . For a random variable X, we can write

$$
\sum P(X=x)=1 \quad \text { for all } x
$$

If the probabilities are given in terms of a constant k, you can find the value of \boldsymbol{k} by equating the sum of the probabilities to one and solving the resulting equation.

Probability distributions can be given in three forms, as in the example below:

1. Probability mass functions: $\quad P(X=x)=\frac{x}{10} \quad$ for $x=1,2,3,4$
2. Tables:

x	1	2	3	4
$P(X=x)$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$

3. Diagrams:

If the probabilities for all possible values of x are equal, then the distribution is a discrete uniform distribution.

