When carrying out a number of trials in an experiment or survey, you can define a random variable X to represent the number of successful trials.

If the following conditions are met, X can be modelled using a binomial distribution:

- There are a fixed number of trials, n
- There are two possible outcomes (success and failure)
- There is a fixed probability of success, \boldsymbol{p}
- The trials are independent of each other

The notation for this is

$$
X \sim B(n, p)
$$

"The random variable X is modelled with a binomial distribution with parameters n and p "

Probabilities for a Binomial Distribution

If a random variable X has a binomial distribution, then its probability mass function is given by

$$
P(X=r)=\binom{n}{r} p^{r}(1-p)^{n-r}
$$

In this formula,

- $\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$, which represents the number of ways of selecting r successes from n trials
- $\quad p^{r}$ represents the probability of achieving r successes, each with probability p
- $\quad(1-p)^{n-r}$ represents the probability of $n-r$ successes (the rest of the trials) with probability $1-p$

Cumulative Probabilities from the Binomial Distribution

A cumulative probability function for a random variable X tells you the sum of all the individual probabilities up to and including the given value of x in the calculation for $P(X \leq r)$ "probability of \boldsymbol{r} successes or fewer"

These cumulative probabilities can be worked out on a calculator.

To find $P(X=x)$, go to Menu \rightarrow 7: Distribution $\rightarrow 4$: Binomial $P D \rightarrow 2$: Variable and input values for x, n and p
To find $P(X \leq x)$, go to Menu $\rightarrow 7$: Distribution $\rightarrow($ down $) \rightarrow 1$: Binomial $C D \rightarrow 2$: Variable and input values for x, n and p

Be careful! Other inequalities need a bit more attention!

The table below gives a useful reference guide to the different contexts and their associated inequalities:

Phrase	Means	Calculation
\ldots greater than $5 \ldots$	$X>5$	$1-P(X \leq 5)$
\ldots no more than $3 \ldots$	$X \leq 3$	$P(X \leq 3)$
\ldots at least $7 \ldots$	$X \geq 7$	$P(X \leq 9)$
\ldots fewer than $10 \ldots$	$X \leq 8$	$P(X \leq 8)$
\ldots at most $8 \ldots$		

