A vector has both magnitude and direction, and can be represented using a directed line segment.

If $\overrightarrow{P Q}=\overrightarrow{R S}$, then the line segments $P Q$ and $R S$ are equal in length and parallel.
$\overrightarrow{A B}=-\overrightarrow{B A}$ as the line segment $A B$ is equal in length, parallel and in the opposite direction to $B A$

Addition and Subtraction

You can add two vectors together using the triangle law for vector addition:

$$
\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}
$$

If $\overrightarrow{A B}=\boldsymbol{a}, \overrightarrow{B C}=\boldsymbol{b}$ and $\overrightarrow{A C}=\boldsymbol{c}$, then $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{c}$

Note the use of bold type to denote vector quantities. When writing vectors by hand, you can use \underline{a} instead of \boldsymbol{a}
Subtracting a vector is equivalent to adding the corresponding negative vector: $\boldsymbol{a}-\boldsymbol{b}=\boldsymbol{a}+(-\boldsymbol{b})$
Adding the vectors $\overrightarrow{A B}$ and $\overrightarrow{B A}$ gives the zero vector: $\overrightarrow{A B}+\overrightarrow{B A}=\mathbf{0}$

Scaling Vectors

Any vector parallel to the vector \boldsymbol{a} may be written as $\lambda \boldsymbol{a}$, where λ is a non-zero scalar.
λ is the scale factor by which \boldsymbol{a} is stretched.
To multiply a column vector by a scalar, multiply each element by the scalar:

$$
\lambda\binom{a}{b}=\binom{\lambda a}{\lambda b}
$$

To add two column vectors, add the x - and y-components separately:

$$
\binom{a}{b}+\binom{c}{d}=\binom{a+c}{b+d}
$$

The magnitude (length) of a vector $a=\binom{x}{y}$ is calculated using Pythagoras: $\quad|a|=\sqrt{x^{2}+y^{2}}$
A unit vector is a vector of length 1 , so a unit vector in the direction of a is: $\quad \widehat{a}=\frac{a}{|a|}=\frac{1}{|a|} a$

$\boldsymbol{i}-\boldsymbol{j}$ notation

The unit vectors parallel to the x - and y-axes are usually denoted by \boldsymbol{i} and \boldsymbol{j} respectively, so $\boldsymbol{i}=\binom{1}{0}$ and $\boldsymbol{j}=\binom{0}{1}$ For any two-dimensional vector $\binom{x}{y}=x \boldsymbol{i}+y \boldsymbol{j}$

Position Vectors

Position vectors are vectors giving the position of a point, relative to a fixed origin O.
The position vector of a point A is the vector $\overrightarrow{O A}$. If $\overrightarrow{O A}=x \boldsymbol{i}+y \boldsymbol{j}$, then the position vector of A is $\binom{x}{y}$ In general, a point P with coordinates (p, q) has a position vector $\overrightarrow{O P}=p i+q j=\binom{\boldsymbol{p}}{q}$

$$
\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}=\overrightarrow{O B}-\overrightarrow{O A},
$$

where $\overrightarrow{O A}$ and $\overrightarrow{O B}$ are the position vectors A and B respectively.

If two vectors are parallel and pass through the same point, then they must lie on the same straight line
If you can show that the vector $\overrightarrow{A B}$ is parallel to the vector $\overrightarrow{A C}$ then points A, B and C must lie on the same line as both vectors pass through the point A in the same direction (or the opposite direction).

We would call vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$ colinear.

You need to be able to solve geometric problems and to find the position vector of a point that divides a line segment in a given ratio.

If a point P divides the line segment $A B$ in the ratio $\lambda: \mu$, then

$$
\overrightarrow{A P}=\frac{\lambda}{\lambda+\mu} \overrightarrow{A B} \quad \text { and } \quad \overrightarrow{P B}=\frac{\mu}{\lambda+\mu} \overrightarrow{A B}
$$

and

$$
\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}=\overrightarrow{O A}+\frac{\lambda}{\lambda+\mu} \overrightarrow{A B}
$$

