AS Pure – Chapter 11 – Vectors

A vector has both magnitude and direction, and can be represented using a directed line segment.

If $\overrightarrow{PQ} = \overrightarrow{RS}$, then the line segments PQ and RS are equal in length and parallel.

 $\overrightarrow{AB} = -\overrightarrow{BA}$ as the line segment AB is equal in length, parallel and in the opposite direction to BA

Addition and Subtraction

You can add two vectors together using the triangle law for vector addition:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
If $\overrightarrow{AB} = a$, $\overrightarrow{BC} = b$ and $\overrightarrow{AC} = c$, then
 $a + b = c$
 A

Note the use of **bold type** to denote vector quantities. When writing vectors by hand, you can use \underline{a} instead of aSubtracting a vector is equivalent to adding the corresponding negative vector: a - b = a + (-b)Adding the vectors \overrightarrow{AB} and \overrightarrow{BA} gives the zero vector: $\overrightarrow{AB} + \overrightarrow{BA} = \mathbf{0}$

Scaling Vectors

Any vector parallel to the vector \boldsymbol{a} may be written as $\lambda \boldsymbol{a}$, where λ is a non-zero scalar.

 λ is the scale factor by which $m{a}$ is stretched.

To multiply a column vector by a scalar, multiply each element by the scalar:

$$\lambda \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \lambda a \\ \lambda b \end{pmatrix}$$

 $\binom{a}{b} + \binom{c}{d} = \binom{a+c}{b+d}$

 $\widehat{a} = \frac{a}{|a|} = \frac{1}{|a|}a$

To add two column vectors, add the x- and y- components separately:

The magnitude (length) of a vector $a = \begin{pmatrix} x \\ y \end{pmatrix}$ is calculated using Pythagoras: $|a| = \sqrt{x^2 + y^2}$

A unit vector is a vector of length 1, so a unit vector in the direction of *a* is:

<u>*i*</u> – *j* notation

The unit vectors parallel to the *x*- and *y*- axes are usually denoted by *i* and *j* respectively, so $i = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $j = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ For any two-dimensional vector $\begin{pmatrix} x \\ y \end{pmatrix} = xi + yj$

Position Vectors

Position vectors are vectors giving the position of a point, relative to a fixed origin *O*.

The position vector of a point A is the vector \overrightarrow{OA} . If $\overrightarrow{OA} = x\mathbf{i} + y\mathbf{j}$, then the position vector of A is $\begin{pmatrix} x \\ y \end{pmatrix}$ In general, a point P with coordinates (p, q) has a position vector $\overrightarrow{OP} = p\mathbf{i} + q\mathbf{j} = \begin{pmatrix} p \\ a \end{pmatrix}$

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA}$$
,

where \overrightarrow{OA} and \overrightarrow{OB} are the position vectors A and B respectively.

If two vectors are parallel and pass through the same point, then they must lie on the same straight line

If you can show that the vector \overrightarrow{AB} is parallel to the vector \overrightarrow{AC} then points *A*, *B* and *C* must lie on the same line as both vectors pass through the point *A* in the same direction (or the *opposite* direction).

We would call vectors \overrightarrow{AB} and \overrightarrow{AC} colinear.

You need to be able to solve geometric problems and to find the position vector of a point that divides a line segment in a given ratio.

If a point *P* divides the line segment *AB* in the ratio $\lambda : \mu$, then

 $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} = \overrightarrow{OA} + \frac{\lambda}{\lambda + \mu} \overrightarrow{AB}$

$$\overrightarrow{AP} = \frac{\lambda}{\lambda + \mu} \overrightarrow{AB}$$
 and $\overrightarrow{PB} = \frac{\mu}{\lambda + \mu} \overrightarrow{AB}$

and

