$N(\mu, \sigma^2)$, where μ is the population mean, σ is the standard deviation and σ^2 is variance

- Continuous, used to find probabilities for data distributed symmetrically about a mean value
- The distribution has a bell-shaped curve with asymptotes at each end.
- The points of inflection are at $\mu + \sigma$ and $\mu \sigma$
- As the distribution is symmetrical, mean = median = mode
- The total area under any normal curve is equal to 1
- The standardised normal distribution has parameters $\mu = 0$ and $\sigma = 1 \implies \mathbf{Z} \sim N(\mathbf{0}, \mathbf{1})$

- A variable X can be standardised using the formula $\mathbf{z} =$
- Your calculator can give you cumulative probabilities for any normal distribution, including Z.
- Your calculator has an inverse normal function which gives the value of your variable when you input the

area of the lower tail only as a probability, including values of z if you

Approximations

The **normal** distribution may be used to approximate the **binomial** distribution B(n, p) if

- *n* is large, *p* is not close to 0 or 1 (so that the binomial is roughly symmetrical)

The approximating normal distribution has parameters $\mu = np$, $\sigma^2 = npq = np(1-p) \Rightarrow N(np, npq)$

Continuity Corrections

When using a Normal distribution (continuous) to approximate the binomial distribution (discrete), you must apply **continuity corrections** – **do not forget these** and be very careful with inclusive/exclusive inequalities. Examples:

Binomial	Normal
P(X = 45)	P(44.5 < X < 45.5)
P(X < 45)	P(X < 44.5)
$P(X \le 45)$	P(X < 45.5)

Sample Means

For samples of size *n* from a normally distributed population $X \sim N(\mu, \sigma^2)$, the distribution of sample means is also normal with the same mean (μ), but the sample standard deviation (s) decreases as sample size is increased:

Population:
$$X \sim N(\mu, \sigma^2) \rightarrow \text{Sample means: } \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Standard deviation of sample means: $s = \frac{\sigma}{\sqrt{n}}$ (also known as the standard error of the mean)

Standardizing formula for sample means: $Z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$ (where \overline{x} is your measured sample mean)

You may have to calculate the standard deviation of a large sample from summary statistics using $s = \sqrt{\frac{\sum x^2 - n\bar{x}^2}{n-1}}$ This can be used as a good estimate of the population standard deviation for (roughly) n > 30

Hypothesis Testing using Sample Means – Example

Test results for the module S1 are normally distributed with a mean of 65 and a standard deviation of 10. After the introduction of a dynamic new teacher (Mr Ludlam), the results of a group of 8 students had a mean of 72. Is there evidence that the results have significantly improved, at the 5% level of significance?

Solution

 $H_0: \mu = 65$

 $H_1: \mu > 65$ where μ is the population mean test result

Let X represent the mark an individual student achieves, so $X \sim N(65, 10^2)$

Distribution of sample means: $\bar{X} \sim N\left(65, \frac{10^2}{8}\right)$ (sample size n = 8)

One-tailed test, 5% significance level (upper tail, so p = 0.95)

Test Statistic: $z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{72 - 65}{10 / \sqrt{8}} = 1.980$

Critical Value, upper tail, 5% level: $\Phi^{-1}(0.95) = 1.645$

Since 1.980 > 1.645, the result is significant, reject H₀

There is sufficient evidence to suggest that Mr Ludlam has had a positive effect.