A2 Statistics - Chapter 3 - The Normal Distribution

$\mathbf{N}\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{\mathbf{2}}\right)$, where μ is the population mean, σ is the standard deviation and σ^{2} is variance

- Continuous, used to find probabilities for data distributed symmetrically about a mean value
- The distribution has a bell-shaped curve with asymptotes at each end.
- The points of inflection are at $\mu+\sigma$ and $\mu-\sigma$
- As the distribution is symmetrical, mean = median = mode
- The total area under any normal curve is equal to 1
- The standardised normal distribution has parameters $\mu=0$ and $\sigma=1 \quad \Rightarrow \quad \boldsymbol{Z} \sim \mathbf{N}(\mathbf{0}, \mathbf{1})$

- A variable X can be standardised using the formula $\boldsymbol{z}=\frac{\boldsymbol{x}-\boldsymbol{\mu}}{\boldsymbol{\sigma}}$
- Your calculator can give you cumulative probabilities for any normal distribution, including Z.
- Your calculator has an inverse normal function which gives the value of your variable when you input the area of the lower tail only as a probability, including values of z if you

Approximations

The normal distribution may be used to approximate the binomial distribution $B(n, p)$ if

- $\quad n$ is large, p is not close to 0 or 1 (so that the binomial is roughly symmetrical)

The approximating normal distribution has parameters $\mu=n p, \sigma^{2}=n p q=n p(1-p) \Rightarrow \boldsymbol{N}(\boldsymbol{n p}, \boldsymbol{n p q})$

Continuity Corrections

When using a Normal distribution (continuous) to approximate the binomial distribution (discrete), you must apply continuity corrections - do not forget these and be very careful with inclusive/exclusive inequalities.

Examples:

Binomial	Normal
$P(X=45)$	$P(44.5<X<45.5)$
$P(X<45)$	$P(X<44.5)$
$P(X \leq 45)$	$P(X<45.5)$

Sample Means

For samples of size \boldsymbol{n} from a normally distributed population $X \sim N\left(\mu, \sigma^{2}\right)$, the distribution of sample means is also normal with the same mean (μ), but the sample standard deviation (s) decreases as sample size is increased:

$$
\text { Population: } X \sim N\left(\mu, \sigma^{2}\right) \rightarrow \text { Sample means: } \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Standard deviation of sample means: $\boldsymbol{s}=\frac{\boldsymbol{\sigma}}{\sqrt{n}}$ (also known as the standard error of the mean) Standardizing formula for sample means: $\quad \boldsymbol{Z}=\frac{\bar{x}-\boldsymbol{\mu}}{\boldsymbol{\sigma} / \sqrt{n}} \quad$ (where \bar{x} is your measured sample mean)
You may have to calculate the standard deviation of a large sample from summary statistics using $s=\sqrt{\frac{\sum x^{2}-n \bar{x}^{2}}{n-1}}$
This can be used as a good estimate of the population standard deviation for (roughly) $n>30$

Hypothesis Testing using Sample Means - Example

Test results for the module S1 are normally distributed with a mean of 65 and a standard deviation of 10 .
After the introduction of a dynamic new teacher (Mr Ludlam), the results of a group of 8 students had a mean of 72 . Is there evidence that the results have significantly improved, at the 5% level of significance?

Solution

$H_{0}: \mu=65$
$\mathrm{H}_{1}: \mu>65 \quad$ where μ is the population mean test result
Let X represent the mark an individual student achieves, so $X \sim N\left(65,10^{2}\right)$
Distribution of sample means: $\bar{X} \sim N\left(65, \frac{10^{2}}{8}\right) \quad$ (sample size $n=8$)
One-tailed test, 5% significance level (upper tail, so $p=0.95$)

Test Statistic: $z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{72-65}{10 / \sqrt{8}}=1.980$
Critical Value, upper tail, 5% level: $\Phi^{-1}(0.95)=\mathbf{1 . 6 4 5}$

Since $1.980>1.645$, the result is significant, reject H_{0}

There is sufficient evidence to suggest that Mr Ludlam has had a positive effect.

