## Factorials

For $n \in \mathbb{N}$ (where $\mathbb{N}$ is the set of natural numbers, or positive integers), $\boldsymbol{n}$ ! denotes " $\boldsymbol{n}$ factorial":

$$
n!=n \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 3 \times 2 \times 1
$$

## Combinations

The number of ways of choosing $r$ items from a group of $n$ items (regardless of order) is written as ${ }^{n} C_{r}$ or $\binom{n}{r}$. This can be calculated as:

$$
{ }^{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

For example, ${ }^{5} C_{2}=\frac{5!}{2!\times 3!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}=\frac{20}{2}=10$
This means there are 10 ways of choosing 2 items from a group of 5 items.
Note that $r$ can equal 0 here: there is always exactly 1 way of choosing zero items from a group of any size.

## Pascal's Triangle

Pascal's triangle is formed by adding adjacent pairs of numbers to find the numbers of the next row:


The $r$ th entry in the $n$th row of Pascal's triangle is given by ${ }^{\boldsymbol{n}-\mathbf{1}} \boldsymbol{C}_{\boldsymbol{r}-\mathbf{1}}$
This means the $(n+1)$ th row of the triangle can be used to read off values of ${ }^{n} C_{r}$ for reasonably small values of $n$.
Using the $5^{\text {th }}$ row as an example:

$$
\begin{aligned}
{ }^{4} C_{0} & =1 \\
{ }^{4} C_{1} & =4 \\
{ }^{4} C_{2} & =6 \\
{ }^{4} C_{3} & =4 \\
{ }^{4} C_{4} & =1
\end{aligned}
$$

## Binomials

A binomial is a polynomial which is the sum of two terms, which we often use enclosed in a set of brackets.
Examples include $(x+1),(x+y),\left(2 x^{2}-3 x\right)$ and $\left(a x^{m}+b y^{n}\right)$

## Binomial Expansion

The binomial expansion is:

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+b^{n} \quad n \in \mathbb{N}
$$

In the expansion of $(a+b)^{n}$, a general term is given by:

$$
{ }^{\boldsymbol{n}_{\boldsymbol{n}}} \boldsymbol{C}_{\boldsymbol{r}} \boldsymbol{a}^{\boldsymbol{n}-\boldsymbol{r}} \boldsymbol{b}^{\boldsymbol{r}} \quad \text { wher }=0,1,2, n
$$

For example, in the expansion of $(5+2 x)^{4}$, the five terms are given by:

$$
\begin{aligned}
& { }^{4} C_{0}(5)^{4}(2 x)^{0}=(1)(625)(1)=625 \\
& { }^{4} C_{1}(5)^{3}(2 x)^{1}=(4)(125)(2 x)=1000 x \\
& { }^{4} C_{2}(5)^{2}(2 x)^{2}=(6)(25)\left(4 x^{2}\right)=600 x^{2} \\
& { }^{4} C_{3}(5)^{1}(2 x)^{3}=(4)(5)\left(8 x^{3}\right)=160 x^{3} \\
& { }^{4} C_{4}(5)^{0}(2 x)^{4}=(1)(1)\left(16 x^{4}\right)=16 x^{4}
\end{aligned}
$$

So,

$$
(5+2 x)^{4}=625+1000 x+600 x^{2}+160 x^{3}+16 x^{4}
$$

Notice that the ${ }^{n} C_{r}$ values here $(1,4,6,4,1)$ are the numbers in the $5^{\text {th }}$ row of Pascal's triangle!
This is a useful time-saver with small values of $n$ for which the relevant row of Pascal's triangle is quick to work out.

## Binomial Approximations

If $x$ is small, the first few terms of a binomial expansion can be used to find an approximation for a tricky calculation.
For example, substituting $x=0.01$ into the first few terms of $(1+2 x)^{9}$ gives an approximation for $1.02^{9}$.
To work out the percentage error of the approximation, use your calculator to work out:

$$
\frac{\text { Approximation }- \text { True value }}{\text { True value }} \times 100
$$

