Key Terms

An experiment is a repeatable process that gives rise to a number of outcomes.
An event is a collection of one or more outcomes.
A sample space is the set of all possible outcomes.
All events have a probability between 0 (impossible) and 1 (certain), usually given as fractions or decimals.

Venn Diagrams

For two events A and B,

Intersection $(A \cap B)$

This event is called the intersection of A and B, denoted $A \cap B$. It represents the event that both A and B occur.

Union $(A \cup B)$

This event is called the union of A and B, denoted $A \cup B$. It represents the event that either A or B (or both) occur.

Complement (A^{\prime})

This event is called the complement of A, denoted A^{\prime} It represents the event that A does not occur.

$$
P\left(A^{\prime}\right)=1-P(A)
$$

For any two events,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Mutually Exclusive Events

When events have no outcomes in common, they are called mutually exclusive (they can't both occur).
For mutually exclusive events, the Venn diagram does not overlap:

$$
P(A \cap B)=0 \text { therefore } P(A \cup B)=P(A)+P(B) \text { for mutually exclusive events }
$$

Independent Events

When one event has no effect of the outcome of another, they are independent.
For independent events, the probability of A happening is the same whether or not B happens (and vice versa).

$$
P(A \cap B)=P(A) \times P(B) \text { for independent events }
$$

You can use this multiplication rule to determine whether events are independent.

