Key Terms

An **experiment** is a repeatable process that gives rise to a number of **outcomes**.

An event is a collection of one or more outcomes.

A sample space is the set of all possible outcomes.

All events have a **probability** between 0 (impossible) and 1 (certain), usually given as fractions or decimals.

Venn Diagrams

For two events A and B,

Intersection $(A \cap B)$

For any two events,

This event is called the intersection of A and B, denoted $A \cap B$. It represents the event that both A and B occur.

This event is called the union of *A* and *B*, denoted $A \cup B$. It represents the event that either *A* or *B* (or both) occur.

This event is called the complement of A, denoted A'It represents the event that A does **not** occur.

P(A') = 1 - P(A)

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Mutually Exclusive Events

When events have no outcomes in common, they are called **mutually exclusive** (they can't both occur). For mutually exclusive events, the Venn diagram does not overlap:

$$P(A \cap B) = 0$$
 therefore $P(A \cup B) = P(A) + P(B)$ for mutually exclusive events

Independent Events

When one event has no effect of the outcome of another, they are **independent**.

For independent events, the probability of A happening is the same whether or not B happens (and vice versa).

 $P(A \cap B) = P(A) \times P(B)$ for independent events

You can use this multiplication rule to determine whether events are independent.