Integration is the opposite of differentiation. It allows us to find the general equation describing the shape of a curve if we know its gradient function. If we also know a point on the curve, we can find the exact equation.

More importantly, it can be used to find areas under curves and (for further mathematicians) volumes of 3D shapes.

## Integrating Powers of $x$

When differentiating a power of $x$, we multiply by the power then reduce the power by one.
When integrating a power of $x$, we reverse this: increase the power by one then divide by the new power.

## Function Gradient Function



Be careful! When differentiating, any constants in the original equation don't appear in the gradient.
So when integrating we must add an arbitrary value (we use $c$ ) to represent the constants that may have been there.
This $c$ is known as the constant of integration, and gives what is known as a general solution to the integral.

The process described above gives rules to find the equation of a polynomial if you know the gradient function:
If $\frac{d y}{d x}=x^{n}$, then $\boldsymbol{y}=\frac{\mathbf{1}}{\boldsymbol{n}+\mathbf{1}} \boldsymbol{x}^{\boldsymbol{n + 1}}+\boldsymbol{c}$
If $f^{\prime}(x)=x^{n}$, then $\boldsymbol{f}(\boldsymbol{x})=\frac{\mathbf{1}}{\boldsymbol{n + 1}} \boldsymbol{x}^{n+1}+\boldsymbol{c} \quad(n \neq-1)$
If $\frac{d y}{d x}=k x^{n}$, then $\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{n + 1}} x^{n+1}+\boldsymbol{c}$
If $f^{\prime}(x)=k x^{n}$, then $\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{k}}{\boldsymbol{n + 1}} x^{\boldsymbol{n + 1}}+\boldsymbol{c} \quad(n \neq-1)$
Note that we can't use this rule for $x^{-1}$, as it would require division by zero. This will be addressed in Y13!

## Notation for Integration

We use the symbol $\int$ to represent the process of integration:

$$
\int f^{\prime}(x) d x=f(x)+c
$$

This is an indefinite integral, as the arbitrary constant $c$ means there are technically an infinite number of solutions! The process of integrating $x^{n}$ can be written as follows:


When you are integrating polynomials, apply this rule separately to each term, like when differentiating:

$$
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
$$

## Finding a Particular Solution

When integrating a gradient function, if we know a point on the original curve, we can find the value of $c$.
This turns the general solution of an integral (with a " $+c$ " term) into a particular solution.
To find the constant of integration $c$, substitute the values of a point on the curve $(x, y)$ into the general solution. This gives an equation which can be solved to find $c$.

## Definite Integration

You can calculate an integral between two limits, or bounds. This is called a definite integral. A definite integral usually produces a value, whereas an indefinite integral always produces a function.

If $f^{\prime}(x)$ is the derivative of a function $f(x)$ for all values of $x$ in the interval $[a, b]$, then the definite integral is:

$$
\int_{a}^{b} f^{\prime}(x) d x=[f(x)]_{a}^{b}=f(b)-f(a)
$$

This is also known as a bounded integral. Here, $a$ is the lower bound of the integral, and $b$ is the upper bound.
Here are the steps for integrating the function $3 x^{2}$ between the limits $x=1$ and $x=2$ :


These definite integrals are hugely important as we can use them to find exact areas under curves.

## Areas under Curves

The area between a continuous positive curve, the $x$-axis and the vertical lines $x=a$ and $x=b$ is given by:

$$
\text { Area }=\int_{a}^{b} y d x
$$


where $y=f(x)$ is the equation of the curve. This is a definite integral, which gives a value for the area.
When the area bounded by the curve and the $x$-axis is below the $x$-axis, $\int y d x$ gives a negative value. If a curve has areas above and below the $x$-axis, find the roots of the equation and consider the areas separately.


Here, calculating $\int_{-3}^{1} y d x$ would give the difference between the two areas (as the negative area would cancel some of the positive area, not add to it). Instead, we need to calculate:

$$
\text { Total Area }=\left|\int_{-3}^{0} y d x\right|+\left|\int_{0}^{1} y d x\right|
$$

Note the modulus signs around each interval.
These tell us to take a positive value for each area, even if the integral is negative.

