The sine and cosine rules can be used to find missing sides and angles for any triangle.
The rules are given based on a triangle with sides a, b, c with corresponding opposite angles A, B, C

The Cosine Rule

To find the missing side in a triangle when you know the other two sides and the angle between them, use:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

To find a missing angle given all three sides, rearrange the cosine rule and use:

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

The Sine Rule

To find a missing side when you know the opposite angle and another side-angle pair, use:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

To find a missing angle when you know the opposite side and another side-angle pair, use:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Note that your calculator will only give values between 0° and 90° for the angle.
There may be a second possible solution between 90° and 180°. To find this, subtract the first angle from 180.
This works because $\sin \theta=\sin (180-\theta)$, as you can see from the graph of the sine function.

Area of a Triangle

You can find the area of any triangle if you know two sides and the angle between them:

$$
\text { Area }=\frac{1}{2} a b \sin C
$$

You may be asked to derive this formula:

Area of a triangle $=1 / 2 \times$ base \times perpendicular height
In this case, $\boldsymbol{A r e a}=\frac{1}{2} \boldsymbol{a} \boldsymbol{h}$
Using SOHCAHTOA, we can see that $\sin C=\frac{h}{b}$, so $h=b \sin C$
Substituting this expression for h into the formula for the area, Area $=\frac{1}{2} a b \sin C$

Trigonometric Graphs

The graphs of sine, cosine and tangent are periodic, meaning they repeat themselves after a fixed interval. The graph $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$ repeats every 360° :

The graph $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$ repeats every 360° :

The graph $y=\tan \theta$ repeats every 180° :

$\tan \theta=0$ when $\theta=0^{\circ}, 180^{\circ}, 360^{\circ}$, etc.
You are expected to be able to transform trigonometric graphs using the same basic transformations seen at GCSE:
Horizontal: $\quad f(x-a) \rightarrow$ translation $\binom{a}{0} \quad f(a x) \rightarrow$ stretch, x-direction, scale factor $\frac{1}{a}$

Vertical: $\quad f(x)+a \rightarrow$ translation $\binom{0}{a}$
Others: $\quad-f(x) \rightarrow$ vertical reflection (in x-axis)
$a f(x) \rightarrow$ stretch, y-direction, scale factor a
$f(-x) \rightarrow$ horizontal reflection (in y-axis)

