Algebraic Fractions

You can simplify algebraic fractions using division.

Where possible, you can also factorise the numerator and denominator and then cancel common factors.

Dividing Polynomials

A polynomial is a finite expression with positive whole number indices (including constants)

Examples include:	$2 x+4$	$4 x y^{2}+3 x-9$	8
These are not polynomials:	\sqrt{x}	$6 x^{-2}$	$\frac{4}{x}$

You can use long division to divide a polynomial in powers of x by a linear binomial $(x \pm p)$, where p is a constant.

Make sure the polynomial is written in descending powers of x, and leave placeholders for missing powers.

If there is no remainder, you can use the result to write the polynomial as a product of two factors.

With practice, you may learn to divide by inspection, although this method only works if there is no remainder.

The Factor Theorem

The factor theorem is a quick way of finding simple linear factors of a polynomial.

The factor theorem states that if $\boldsymbol{f}(\boldsymbol{x})$ is a polynomial, then:

- If $f(a)=0$, then $(x-a)$ is a factor of $f(x)$
- If $(x-a)$ is a factor of $f(x)$, then $f(a)=0$

These statements don't necessarily imply each other. The proof that both are true is beyond the scope of the course.

You can use the factor theorem to factorise a cubic function, $f(x)$, as follows:

1. Substitute values of x into the function until you find a value a such that $f(a)=0$
2. Divide the function by the factor $(x-a)$. The remainder should be 0 , confirming that $(x-a)$ is a factor
3. Write $f(x)=(x-a)\left(A x^{2}+B x+C\right)$. If $f(x)$ is cubic, the other factor will always be a quadratic.
4. Factorise the quadratic factor, if possible, to write $f(x)$ as a product of three linear factors.
