A quadratic equation can be written in the form $a x^{2}+b x+c=0$, where a, b and c are constants and $a \neq 0$.
a, b and c are called coefficients. a is the coefficient of x^{2}, b is the coefficient of x and c is the constant coefficient.
Quadratic equations can have one, two or no real solutions, also called roots.
If a quadratic only has one solution, we call this a repeated root.
There are three methods you need to know for solving quadratic equations:

Factorising

- Write the equation in the form $a x^{2}+b x+c=0$
- Factorise the left-hand side
- Set each factor equal to zero and solve to find value(s) for x

Quadratic Formula

- Write the equation in the form $a x^{2}+b x+c=0$
- Substitute a, b and c into the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Completing the Square

- Write the equation in the form $a x^{2}+b x+c=0$
- Rearrange the left-hand side into the form $p(x+q)^{2}+r=0$
- Solve by subtracting r, dividing by p, square rooting and subtracting q
- Don't forget the square root can be positive or negative!

The Discriminant

For a quadratic function $f(x)=a x^{2}+b x+c$, the expression $b^{2}-4 a c$ is called the discriminant.
The value of the discriminant tells us how many real roots $f(x)$ has:

- If $b^{2}-4 a c>0$, then the quadratic function has two real roots.
- If $b^{2}-4 a c=0$, then the quadratic function has one repeated real root.
- If $b^{2}-4 a c<0$, then the quadratic function has no real roots.

The diagrams below show how the value of the discriminant relates to the number of real roots a quadratic has:

$$
a>0
$$

$b^{2}-4 a c>0$
Two distinct real roots
$a<0$

$b^{2}-4 a c=0$
One repeated root

$b^{2}-4 a c<0$
No real roots

Quadratic Graphs

If the coefficient of x^{2} is positive, the graph has a U shape. If it is negative, the graph is "upside-down" (\cap-shaped)
When sketching a quadratic graph, always label the points of intersection with the x-axis and y-axis.
You may also be asked to find the turning point, which always has an x-coordinate midway between the roots.
You can also find the turning point by completing the square: if $f(x)=a(x+p)^{2}+q$, the turning point is $(-p, q)$
Later in the course, you will see that the turning point can also be found using a technique called differentiation.

Functions

A function is a mathematical relationship that maps each input to a single output.
The set of possible inputs for a function is called the domain.
The set of possible outputs for a function is called the range.
The diagram to the right shows several mappings in the function $f(x)=x^{2}$
The roots of a function $f(x)$ are the values of x for which $f(x)=0$

