Set Notation and Venn Diagrams

The event " A and B " can be written as $A \cap B$. The symbol \cap is the symbol for intersection.

If A and B are independent, then the intersection $P(A \cap B)=P(A) \times P(B)$
If A and B are mutually exclusive, then the intersection is empty.
In this case, $A \cap B=\emptyset$, where \emptyset denotes the empty set, and $P(A \cap B)=0$
The symbol \mathbb{E} is used to represent the whole sample space.

The event " A or B " can be written as $A \cup B$. The symbol \cup is the symbol for union.
Note that the union covers " A or B or both"

The union can be found by adding circles for A and B then subtracting the intersection, which was counted twice:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Hence, If A and B are mutually exclusive, then the union $P(A \cup B)=P(A)+P(B)$

The event "not A " can be written as A^{\prime}. This is also called the complement of A.

Events A and A^{\prime} are always mutually exclusive.

Conditional Probability

The probability that B occurs given that A has already occurred is written as $P(B \mid A)$.

Similarly, the probability that B occurs given that A has not occurred is given as $P\left(B \mid A^{\prime}\right)$.
For independent events, $P(B \mid A)=P\left(B \mid A^{\prime}\right)=P(B)$
In plain English, this just means that the probability of B occurring is the same regardless of whether A occurs.
This is also true in reverse: $P(A \mid B)=P\left(A \mid B^{\prime}\right)=P(A)$ if A and B are independent.

You can solve problems involving conditional probability by considering a restricted sample space.
For $P(B \mid A)$, we can consider this probability to be equal to the probability of B occurring in the restricted sample space for which A has already occurred. This is described mathematically as:

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

This is essentially the probability of both B and A occurring, as a fraction of the probability of A occurring.
This is given in the Formula Book in a rearranged form:

$$
P(A \cap B)=P(A) \times P(B \mid A)
$$

Checking for Independence

You now have two ways of checking whether two events are independent:
If $\boldsymbol{P}(\boldsymbol{A}) \times \boldsymbol{P}(\boldsymbol{B})=\boldsymbol{P}(\boldsymbol{A} \cap \boldsymbol{B}) \quad$ - this is usually the easiest check to calculate - use it in the exam!
If $\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})=\boldsymbol{P}(\boldsymbol{B}) \quad$ - use this if you are given or have already calculated $P(B \mid A)$
Both of these are given in the Formula Book.

