You know that if n is a positive integer (natural number), you can expand $(a+b x)^{n}$ using the formula:

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n} \quad(n \in \mathbb{N})
$$

and substituting $b x$ for b.

If n is a fraction or a negative number, you need to use a different version of the binomial expansion:

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots
$$

This expansion is only valid for $|\boldsymbol{x}|<1, n \in \mathbb{R}$

Unless n is a positive integer, none of the coefficients will equal zero and so this version of the binomial expansion will produce an infinite number of terms.

Since x is restricted to values between -1 and 1 , the terms will tend towards zero as the powers of x increase. This means a finite number of terms can give an approximate value for the expansion.

$(1+b x)^{n}$

To expand $(1+b x)^{n}$, substitute $b x$ for x and apply the formula as normal.

The expansion of $(1+b x)^{n}$ is only valid for $|b x|<1$, or $|x|<\frac{1}{|b|}$
$(a+b x)^{n}$
To expand $(a+b x)^{n}$, take out a factor of a to get $a^{n}\left(1+\frac{b}{a} x\right)^{n}$ and apply the formula as normal.

The expansion of $(a+b x)^{n}$ is only valid for $|b x|<|a|$, which is equivalent to $|x|<\left|\frac{a}{b}\right|$

Validity for combinations of binomial expansions

If two or more binomial expansions are combined into a single function, the range of values of x for which the function is valid is taken from the binomial with the strictest limits. For example:
$(1+3 x)^{n}$ is valid for $|x|<\frac{1}{3} \quad(2-5 x)^{n}$ is valid for $|x|<\frac{2}{5}$ so $(1+3 x)^{n}(2-5 x)^{n}$ is valid for $|x|<\frac{1}{3}$

Multiplying two binomial expansions

When asked to expand a product of two different binomials to get a result up to, say, the term in x^{3}, expand each binomial separately up to the required term and then multiply the two using a grid. This makes it straightforward to evaluate and collect just the terms that you need, and reduces the risk of errors when multiplying out large brackets.

