GRAPHIC ORGANISER

STRUCTURE

INTERCOSTAL MUSCLES

RESPONSES TO EXERCISE (Short Term)

- **1.** Increase in breathing rate
- 2. Increased tidal volume

MECHANISMS OF BREATHING

	Inspiration	Expiration	External intercostals contract
Diaphragm	Contracts = Flattens	Relaxes = Domes	
External Intercostals	Contract = Lifts rib cage	Relax = Rib cage drops *	
Chest cavity	Increases	Decreases	
Thoracic Pressure	Drops	Rises	
Air flows	In	Out	

*During exercise exhalation becomes an active process.

The internal intercostal muscles contract to pull the rib cage down.

LUNG VOLUMES

Lung Volume	Definition	
Tidal Volume	Total air inhaled/exhaled in one breath under resting conditions*	
Vital Capacity	Maximum amount of air that can be expired after a maximum inhalation	
Residual Volume	Amount of air remaining in the lungs after a forced exhalation	
Total Lung Volume	Maximum amount of air in the lungs after a maximum inspiration	
Pulmonary Ventilation (VE)	Total amount of air inhaled / exhaled per minute	

*During exercise, tidal volume (TV) and respiratory rate (RR; breaths per minute) increase. Together these increase Pulmonary Ventilation (VE). TV x RR = VE

GASEOUS EXCHANGE

This is where the respiratory and cardiovascular systems meet.

CONTROL OF BREATHING

1. Increased vital capacity

ADAPTATIONS TO EXERCISE (Long Term)

2. Increased strength of the respiratory muscles

3. Increase in oxygen and carbon dioxide diffusion rates

Neural Control

Involuntary Control

Breathing is controlled automatically by the respiratory control centre (the Medulla Oblongata and Pons)

Voluntary Control

Breathing can be controlled voluntarily by the cerebral cortex (e.g. holding your breath or deliberately hyperventilating)

Chemical Control

1. Inspired

oxygen

arrives at the

alveoli

5. CO2 is

breathed

out, along

with water

vapour

Chemoreceptors are located in the aorta, carotid artery & medulla oblongata. They...

2. Oxygen

dissolves in

the moist

alveolar

membrane

4. CO2

diffuses

across the

membrane

Detect change in blood CO2 concentration

- Exercise means CO2 concentration goes up •
- Breathing rate is increased
- CO2 removal speeds up

Detect change in pH (acidity)

- Exercise means blood lactate (acidic) builds up ٠
- Breathing rate is increased •
- Lactate breakdown speeds up ٠

ADDITIONAL FACTORS

- **1.** Asthma

Made by Mike Tyler @MikeTylerSport

Carotid Artery

2. Effects of altitude/partial pressure on the respiratory system