<u>Y8 Maths Knowledge Organiser Topic 9: Rates of change</u>

You may need to revise the following: • Year 7 Topic 8: Working with units New content: • Use the relationship between distance, • Mathswatch R11a • Write speed in different units such as k • Convert from one unit of speed to anoth • Solve word problems involving speed, uni • Use the relationship between density, m problems • Mathswatch R11b	m/h, m/min, m/s and cm/s ner (e.g. km/h to m/s) form speed and average speed	Speed Density Uniform	something involves t distance a A measur an object <u>amount</u> . and small density.	ement of <u>how heavy</u> is for a <u>given</u> If an object is heavy	
 New content: Use the relationship between distance, Mathswatch R11a Write speed in different units such as k Convert from one unit of speed to anoth Solve word problems involving speed, uni Use the relationship between density, m problems 	m/h, m/min, m/s and cm/s ner (e.g. km/h to m/s) form speed and average speed		involves t distance a A measur an object <u>amount</u> . and small density.	wo other measures, and time. ement of <u>how heavy</u> is for a <u>given</u> If an object is heavy	
 Use the relationship between distance, Mathswatch R11a Write speed in different units such as k Convert from one unit of speed to anoth Solve word problems involving speed, uni Use the relationship between density, n problems 	m/h, m/min, m/s and cm/s ner (e.g. km/h to m/s) form speed and average speed		distance <i>c</i> A measur an object <u>amount</u> and small density.	and time. ement of <u>how heavy</u> is for a <u>given</u> If an object is heavy	
 Mathswatch R11a Write speed in different units such as k Convert from one unit of speed to anoth Solve word problems involving speed, uni Use the relationship between density, n problems 	m/h, m/min, m/s and cm/s ner (e.g. km/h to m/s) form speed and average speed		A measur an object <u>amount</u> . and small density.	ement of <u>how heavy</u> is for a <u>given</u> If an object is heavy	
 Write speed in different units such as k Convert from one unit of speed to anoth Solve word problems involving speed, uni Use the relationship between density, n problems 	ner (e.g. km/h to m/s) form speed and average speed	Uniform	<u>amount</u> . : and small density.	If an object is heavy	
 Convert from one unit of speed to anoth Solve word problems involving speed, uni Use the relationship between density, n problems 	ner (e.g. km/h to m/s) form speed and average speed	Uniform	and small density.		
 Use the relationship between density, n problems 	-	Uniform	density.		
problems	nass and volume to solve	Uniform		and small it will have a higher density.	
			A value which <u>does not change</u> .		
<u>Speed</u>	Converting units of speed	d			
Speed = distance ÷ time	This is usually best done in st c	z in stages.			
Speed is usually measured in:	e.g. Convert 60 km/h into m/s				
Kilometres per hour km/h		km/h = 60,000 m/h (x 1000)			
Miles per hour mph		000 m/h = 1000 m/min (÷ 60)			
Metres per second m/s	60 seconds in an hour 1000 m/min = 16.67 m/s (2d.p.) (÷60)				
	Problem solving with spee	<u>ed</u>			
The formula can also be rearranged to give: \land	On the first part of the journ	ey a car tr <i>o</i>	ivels 160 kr	n in 3 hours. On the	
Time = distance \div speed D	second part of the journey the	car travels	s at 70km/l		
Distance = speed x time ST	What is the average speed of	the journey	?		
Questions involving speed will often talk	During the second part of the journey the car travels:				
about 'average speed'. Objects rarely	Distance = speed x time = $70 \times 2 = 140$ km.				
travel at a constant speed and instead speed up and slow down during the journey.	So total distance = 140 + 160 = 300km.				
To get around this we often use the average speed of the journey instead.	And total time = $3 + 2 = 5$ hours.				
Average speed = total distance \div total time	Average speed = total distance \div total time = 300 \div 5 = 60 km/h.				
- ··	Problem solving with dens	<u>sity</u>			
Density	Material A has a density of 5.	3g/cm³.			
Density is mass ÷ volume	Material B has a density of $4.1g/cm^3$.				
Density is usually measured in: Kilograms per metre cubed km/m ³	377g of Material A and 1.64kg of Material B form Material C. \checkmark				
Kilograms per metre cubed km/m^3 Grams per centimetre cubed g/cm^3	Work out the density of Material C Density is in grams				
	Volume of Material A = $377 \div$		1 ³	per cm ³ so all mass	
The formula can also be rearranged to give:	Volume of Material $B = 1640$		0 m	needs to be in grams 1.64kg = 1640g	
Volume = mass \div density \bigwedge	Total volume of Material $C = C$				
Mass = density x volume $\frac{M}{D}$	Total mass of Material $C = 37$		-		
	Density of Material $C = 2017$	÷ 465 = 4.3	54 g/cm² (2a.p.)	