AQA C1b Atomic structure and the periodic table Combined Foundation

1 H	2	2 Alkali metals 2 table										3	Halo 4	gens 5	6	Nc 7	oble ga 0 [/] He	ses
Li	Be											В	С	Ν	0	F	Ne	
Na	Mg	Transition metals							AI	Si	Ρ	S	CI	Ar				
К	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	-	Xe	
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	?	?	?						e dark right	

metals		Form positive ions. Conductors, high melting and boiling points, ductile, malleable						
no	n-metals	Form negative ions. Insulators, low melting and boiling points						
е	•		of molecules. ains a pair of	Halogen atoms have 7 electrons in their outer shells. They form -1 ions				
Group 7 – the halogens	increase		ing points group (gas at , then solid)	The atomic mass of the halogens gets heavier as you go down				
	reactivity c	lecreases	down the group	As the atoms get bigger, the nucleus is further from the outer shell so has less pull on electrons				
with metals	forms a metal halide		metal + haloge halid e.g. sodium + o sodium ch	e chlorine →	e.g. 2Na + Cl ₂ → 2NaCl			
with hydrogen	forms a hydrogen halide		hydrogen + ha hydrogen e.g. hydrogen → hydrogen	halide + bromine	e.g. Cl₂+H₂ → 2HCl			
with solutions of halides	A more re haloger displace t reactive h from the	n will he less alogen	chlorine + po bromide → p chloride + b	otassium	e.g. Cl ₂ +2KBr \rightarrow 2KCl + Br ₂			

Development of the Periodic table	Before the discovery of protons	Elements used to be arranged in order of atomic weight	Early periodic tables were incomplete. Some elements were placed in inappropriate groups if the strict order of atomic weights was followed
	What did Mendeleev do?	Mendeleev left gaps for elements that hadn't been discovered yet	Elements with properties predicted by Mendeleev were discovered and filled in the gaps. Knowledge of isotopes explained why order based on atomic weights was not always correct
Devel	Now, elements are arranged in order of atomic number	Elements with similar properties are in columns called groups	Elements in the same group have the same number of outer shell electrons and elements in the same period (row) have the same number of electron shells

	- alkali als	They are very rea water and chlori	active with oxygen, ne	They only have 1 electron in their outer shell. They form +1 ions			
the	Group 1 - a metals		Group 1 elements go down the group	As you go down the group the atoms get bigger. This means that the negative outer electron is further from the positive nucleus so it is more easily lost			
elements in the able	with oxygen	forms a metal oxide	metal + oxygen → metal oxide		e.g. 4Na + $O_2 \rightarrow 2Na_2O$		
	with water	forms a metal hydroxide and hydrogen	metal + water → metal hydroxide + hydrogen		e.g. 2Na + 2H₂O → 2NaOH + H₂		
Important families of periodic t	with chlorine	forms a metal chloride	metal + chlorine →	• metal chloride	e.g. 2Na + Cl ₂ → 2NaCl		
l m							

) - noble ses	They are very unreactive and don't form molecules.	They are unreactive because they already have full outer shells of electrons.			
Group 0 gas	They are all gases but their boiling points increase as you go down the group.	The atomic mass increases as you go down the group. The atoms get heavier and more energy is needed to make the element boil.			