
AQA C1a Atomic structure and the periodic table **COMBINED FOUNDATION**

p _c s	atom	The smallest part of an element that can exist	Have a radius of around 0.1 nanometres and have no charge
element Co	Contains only one type of atom	Around 100 different elements each one is represented by a symbol e.g. O, Na, Br	
elen cor	compound	Two or more elements chemically combined	Compounds can only be separated into elements by chemical reactions

nucleus	Contains protons and neutrons
electron shells	Contains electrons

Sub atomic
particles

name of particle	relative charge	relative mass
proton	+1	1
neutron	0	1
electron	-1	very small

	Electron shell	How many electrons?
υ s	1	2
roni ture	2	8
Electronic structures	3	8
E St	4	18

	Electron shell	How many electrons?
ט ט	1	2
ture	2	8
Electronic structures	3	8
ם די	4	18

Before the discovery of the Tiny solid balls that electron, John Dalton said these pre 1900 could not be divided solid balls made up the different elements. JJ Thompson's experiments showed (a+0+ (a+0+ 1897 A ball of positive charge that an atom must contain small with negative electrons 'plum negative charges (discovery of pudding' embedded in it electrons). Ernest Rutherford's alpha particle Positively charged nucleus 1909 scattering experiment showed at the centre surrounded nuclear that most of the mass of an atom model by negative electrons was at its centre. Niels Bohr proposed that electrons 1913 **Electrons** orbited in fixed shells; this was orbit the nucleus at Bohr supported by experimental specific distances model

The development of the model of the atom

James Chadwick

Provided the evidence to show the existence of neutrons within the nucleus

observations.

scattering experiment	A beam of alpha particles were directed at very thin gold foil

Most of the alpha particles passed right through. A few positive alpha particles were deflected by the positive nucleus. A tiny number of particles reflected back from the nucleus.

mixtures	Two or more elements or compounds	
illixtures	not chemically combined together.	

Can be separated by
one of these methods:

Method Description		Example
filtration Separating an insoluble solid from a liquid		To get sand from a mixture of sand, salt and water.
crystallisation To separate a solid from a solution		To obtain pure crystals of sodium chloride from salt water.
simple distillation	To separate a solvent from a solution	To get pure water from salt water.
fractional Separating a mixture of liquids with different boiling points		To separate the different compounds in crude oil.
chromatography	Separating substances that move at different rates through a medium	To separate out the dyes in food colouring.

	chemical equations	These show how chemical reactions change reactants into products. An energy change usually happens too.	Law of conservation of mass states the total mass of products must equal the total mass of reactants.
•	word equations	Uses words to show reaction: reactants → products magnesium + oxygen → magnesium oxide	Does not show what is happening to the number of atoms.
	symbol equations	Uses symbols to show reaction reactants \rightarrow products $2Mg + O_2 \rightarrow 2MgO$	Shows the number of atoms and molecules in the reaction. These need to be balanced.

atomic mass sedoposi	atoms of the same element with the same number of protons and different numbers of neutrons
----------------------	--

³⁵Cl (75%) and ³⁷Cl (25%) relative atomic mass = ((% isotope 1 x mass isotope 1) + (% isotope 2 x mass isotope 2)) ÷ 100 e.g. $((25 \times 37) + (75 \times 35)) \div 100 = 35.5$