## AQA P5a Forces - the basics Combined Foundation

## Required Practical for this topic: Hooke's Law

| s and              | mass                            | How much matter something is made of                | Measured in kilograms (kg)    |
|--------------------|---------------------------------|-----------------------------------------------------|-------------------------------|
| ty, mass<br>weight | weight                          | The force acting on an object due to gravity        | Measured in newtons (N)       |
| Gravity,<br>we     | gravitational<br>field strength | How much weight is experienced per kilogram of mass | On Earth, this is 9.8<br>N/kg |

Weight = mass x gravitational field strength  $(W = m \times g)$ 

|                                                                            | unit         | For example: newton (N), kilogram (kg), metre (m) |                                |
|----------------------------------------------------------------------------|--------------|---------------------------------------------------|--------------------------------|
| tions                                                                      | kilo         | For example: kilonewton (kN), kilogram (kg)       | 1000 or 1x10 <sup>3</sup>      |
| definition                                                                 | mega         | For example: meganewton (MN)                      | 1,000,000 or 1x10 <sup>6</sup> |
| pu                                                                         | velocity     | Speed in a given direction                        | m/s                            |
| Units a                                                                    | distance     | How far                                           | m                              |
| j                                                                          | displacement | Distance in a given direction                     | e.g. 5 metres east             |
| centre of mass = the single point through which the weight of an object ac |              | object acts                                       |                                |

| Scalars and vectors | scalar | A quantity that only has magnitude (size), e.g. mass, time, temperature, energy, speed |
|---------------------|--------|----------------------------------------------------------------------------------------|
|                     | vector | A quantity that has<br>magnitude and<br>direction, e.g. force,<br>velocity, momentum   |

Arrows can be used to show vectors: Length of the arrow = size of the vector Direction of the arrow = direction of the vector



| ırgy                             | work done                                                                                            | When work is done, energy is transferred.  Work done = force x distance (W = Fs) |
|----------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Work done and energy<br>transfer | 1 joule of work is done when 1 newton of force moves an object 1 metre in the direction of the force |                                                                                  |
|                                  | If the force is at right angles to the direction of movement then no work is done                    |                                                                                  |
| Wo                               | If work is done against friction then the thermal energy store of the object will increase           |                                                                                  |

|        | A force can be a push or a pull                                                             | Examples are stretch, squash and turn         |  |
|--------|---------------------------------------------------------------------------------------------|-----------------------------------------------|--|
|        | Contact forces are exerted between two objects when they touch                              | E.g. friction, air resistance and tension     |  |
| Forces | Non-contact forces are exerted between two objects without touching                         | E.g. gravity, magnetism, electrostatic forces |  |
|        | Resultant force = the single force which has the same effect as all the forces on an object |                                               |  |
|        | Two forces acting in the same direction                                                     | are added together                            |  |
|        | Two forces acting in opposite directions                                                    | are taken away                                |  |

| A free body diagram shows the magnitude and direction of all the forces on an object | 10N 5N 1N |
|--------------------------------------------------------------------------------------|-----------|
| The object in the diagram would experience a force of 5N to the left                 |           |

| Forces can  elastic deformation  inelastic deformation  An object has been stretched but can return to its original length  An object is stretched and can't return to its original length  extension =  Current length – original length  Hooke's law  The extension is directly proportional to the force stretching an object  The point at which a force-extension graph stops being a straight line and Hooke's law stops being true  elastic potential energy  Energy stored in a stretched spring  work done on a spring  Increases the elastic potential energy store and thermal energy store of the spring  Hooke's law: force (N) = spring constant (N/m) x extension (m) (F = k x e) |         |                                                                                       |                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------|-------------------------------------|--|
| inelastic deformation  An object is stretched and can't return to its original length  extension =  Current length — original length  The extension is directly proportional to the force stretching an object  limit of proportionality  The point at which a force-extension graph stops being a straight line and Hooke's law stops being true  elastic potential energy  Energy stored in a stretched spring  work done on a spring  Increases the elastic potential energy store and thermal energy store of the spring                                                                                                                                                                     |         | Forces can                                                                            | accelerate or deform an object.     |  |
| Inelastic deformation   length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | elastic deformation                                                                   | ·                                   |  |
| Hooke's law  The extension is directly proportional to the force stretching an object  The point at which a force-extension graph stops being a straight line and Hooke's law stops being true  elastic potential energy  Energy stored in a stretched spring  work done on a spring  Increases the elastic potential energy store and thermal energy store of the spring                                                                                                                                                                                                                                                                                                                        | city    | inelastic deformation                                                                 | ,                                   |  |
| stretching an object  Imit of proportionality  elastic potential energy  work done on a spring  stretching an object  The point at which a force-extension graph stops being a straight line and Hooke's law stops being true  Energy stored in a stretched spring  Increases the elastic potential energy store and thermal energy store of the spring                                                                                                                                                                                                                                                                                                                                          |         | extension =                                                                           | Current length – original length    |  |
| elastic potential energy  Energy stored in a stretched spring  work done on a spring  Increases the elastic potential energy store and thermal energy store of the spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ces and | Hooke's law                                                                           | , · · ·                             |  |
| work done on a spring  Increases the elastic potential energy store and thermal energy store of the spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For     | limit of proportionality                                                              |                                     |  |
| thermal energy store of the spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | elastic potential energy                                                              | Energy stored in a stretched spring |  |
| Hooke's law: force $(N)$ = spring constant $(N/m)$ x extension $(m)$ $(F = k \times e)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | work done on a spring                                                                 |                                     |  |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | Hooke's law: force (N) = spring constant $(N/m)$ x extension $(m)$ $(F = k \times e)$ |                                     |  |

elastic potential energy (J) =  $\frac{1}{2}$  x spring constant (N/m) x extension<sup>2</sup> (m<sup>2</sup>) (E =  $\frac{1}{2}$  ke<sup>2</sup>)