Combined Higher Alkali metals The periodic Noble gases Halogens table 1 2 6 0 3 4 5 Н He Li Be С F Ne Ν O Transition metals Na Mg Si ΑI Р S CI Ar Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br K Ca Sc Τi |Ag Zr Nb Mo Tc Ru Rh Pd Rb Sr In Sn Sb Te Xe Cd Hf Ta W Re Os Pt Cs Ba La Pb Bi Ir Au Hg ΤI Rf Db Sg Bh Hs Mt Metals to the left of the dark ? ? line, non-metals to the right

AQA C1b Atomic structure and the periodic table

metals	Form positive ions. Conductors, high melting and boiling points, ductile, malleable
non-metals	Form negative ions. Insulators, low melting and boiling points

he	Halogens are made of molecules. Each molecule contains a pair of atoms.		Halogen	their outer shells. They form -1 ions
Group 7 – the halogens	Melting and boiling points increase down the group (gas at the top, then liquid, then solid)		The atomic mass of the halogens gets heavier as you go down	
9 c	reactivity decreases down the group		is further	ms get bigger, the nucleus from the outer shell so has as pull on electrons
with metals	forms a metal halide	metal + halogen → metal halide e.g. sodium + chlorine → sodium chloride		e.g. 2Na + Cl ₂ → 2NaCl
with hydrogen	forms a hydrogen halide	hydrogen + halogen → hydrogen halide e.g. hydrogen + bromine → hydrogen bromide		e.g. Cl₂+ H₂ → 2HCl
with solutions of halides	A more reactive halogen will displace the less reactive halogen from the salt	chlorine + potassium bromide → potassium chloride + bromine		e.g. $Cl_2 + 2KBr \rightarrow 2KCl + Br_2$

Development of the Periodic table

Before the discovery of protons	to be arranged in order of atomic weight	Early periodic tables were incomplete. Some elements were placed in inappropriate groups if the strict order of atomic weights was followed
What did Mendeleev do?	Mendeleev left gaps for elements that hadn't been discovered yet	Elements with properties predicted by Mendeleev were discovered and filled in the gaps. Knowledge of isotopes explained why order based on atomic weights was not always correct
Now, elements are arranged in order of atomic number	Elements with similar properties are in columns called groups	Elements in the same group have the same number of outer shell electrons and elements in the same period (row) have the same number of electron shells

Important families of elements in the periodic table

ıp 1 - alkali metals		They are very reactive with oxygen, water and chlorine		They only have 1 electron in their outer shell. They form +1 ions	
Group 1	mei	The reactivity of Group 1 elements increases as you go down the group		As you go down the group the atoms get bigger. This means that the negative outer electron is further from the positive nucleus so it is more easily lost	
with	oxygen	forms a metal oxide	metal + oxygen → metal oxide		e.g. 4Na + O ₂ → 2Na ₂ O
with	water	forms a metal hydroxide and hydrogen	metal + water → metal hydroxide + hydrogen		e.g. 2Na + 2H₂O → 2NaOH + H₂
with	chlorine	forms a metal chloride	metal + chlorine → metal chloride		e.g. 2Na + Cl ₂ → 2NaCl

- noble	They are very unreactive and don't form molecules.	They are unreactive because they already have full outer shells of electrons.
Group 0	They are all gases but their boiling points increase as you go down the group.	The atomic mass increases as you go down the group. The atoms get heavier and more energy is needed to make the element boil.