AQA C7a Crude Oil TRIPLE CHEMISTRY

Crude oil, hyd	rocarbons and alkanes			
crude oil	A finite resource Consisting mainly of plankton that wa the remains of ancient biomass.	as buried in the mud	, crude oil is	
hydrocarbon s	They are made of hydrogen and carb majority of the compounds in crude Some of them are called alkanes	oon only. These mak oil.	e up the	boiling po which liqu
general formula for	C _n H _{2n+2} For example:			viscosity (how easi
alkanes	Displayed formula for	Гн		flammabil (how easi
	the first four alkanes	_ H-C-H	H-C-C-H H H	Fractional
Cracking and	d Alkenes	Methane (CH ₄)	Ethane (C ₂ H ₆)	Chain leng
ecane → pen	tane + propene + ethane	H H H H-C-C-C-H H H H	H H H H H-C-C-C-C-H H H H H H H H H	Hydrocarbo lots of diffe
$C_{10}H_{22} \rightarrow C_5H$	$H_{12} + C_3 H_6 + C_2 H_4$	Propane (C ₃ H ₈)	Butane (C_4H_{10})	The boiling

alkanes to alkenes	Long chain alkanes are cracked into short chain alkenes.
alkenes	Alkenes are hydrocarbons with a double bond (some are formed during the cracking process).
properties of alkenes	Alkenes are more reactive than alkanes and react with bromine water, turning it from orange to colourless

cracking	The break chain hyd smaller ch	ing down of long rocarbons into aains	The smaller chains are more useful and in demand. Cracking can be done by various methods including catalytic cracking and steam cracking.
catalytic cracking	The heavy fraction is heated until vaporised, then the vapour is passed over a hot catalyst forming smaller, more useful hydrocarbons.		
steam cracking	The heavy fraction is heated until vaporised then the vapour is mixed with steam and heated to a very high temperature forming smaller, more useful hydrocarbons.		
alkenes and uses as Used to produce poly		Used to produce poly	mers. They are also used as the starting materials

polymers	of many other chemicals, such as alcohol, plastics and detergents.
Why do we crack long chains?	Without cracking, many of the long hydrocarbons would be wasted as there is not as much demand for these as for the shorter chains.

Properties of hydrocarbons	
----------------------------	--

combustion	During the complete combustion of hydrocarbons, the carbon and hydrogen in the fuels are oxidised, releasing carbon dioxide, water
	and energy.

Complete combustion of methane: Methane + oxygen \rightarrow carbon dioxide + water + energy CH₄ (g) + 2O₂ (g) \rightarrow CO₂ (g) + 2 H₂O (I)

Cool (25°C)

Refinery gases

Gasoline (Petrol)

Naphtha

Kerosene

Diesel Oil

Fuel Oil

Residue

	2
boiling point (temperature at which liquid boils)	As the hydrocarbon chain length increases, boiling point increases.
viscosity (how easily it flows)	As the hydrocarbon chain length increases, viscosity increases.
flammability (how easily it burns)	As the hydrocarbon chain length increases, flammability decreases.

Fractional distillation and petrochemicals

Chain length and boiling point

Hydrocarbon chains in crude oil come in lots of different lengths. The boiling point of the chain depends on its length. During fractional distillation, they boil and separate at different temperatures due to this.

> (You do <u>not</u> need to remember the names or boiling points of any of these fractions)

		Hot (350°C)
fractions	The hydrocarbons in crude oil can be split into fractions	Each fraction contains molecules with a similar number of carbon atoms in them. The process used to do this is called fractional distillation.
using fractions	Fractions can be processed to produce fuels and feedstock for petrochemical Industry	We depend on many of these fuels; petrol, diesel and kerosene. Many useful materials are made by the petrochemical industry; solvents, lubricants and polymers.