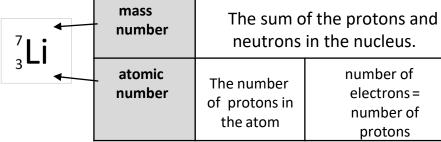

AQA C1a Atomic structure and the periodic table **COMBINED HIGHER**

Atoms elements compour


atom	The smallest part of an element that can exist	Have a radius of around 0.1 nanometres and have no charge
element	Contains only one type of atom	Around 100 different elements each one is represented by a symbol e.g. O, Na, Br
compound	Two or more elements chemically combined	Compounds can only be separated into elements by chemical reactions

nucleus	Contains protons and neutrons
electron shells	Contains electrons

	ame of article	relative charge	relative mass
þ	roton	+1	1
n	eutron	0	1
el	ectron	-1	very small

		she
ပ	S	1
roni	ture	2
Electronic	structures	3
Ш	st	4

	<u> </u>	
	Electron	How many
	shell	electrons?
S	1	2
ture	2	8
structures	3	8
St	4	18

Before the discovery of the Tiny solid balls that electron, John Dalton said these pre 1900 could not be divided solid balls made up the different elements. JJ Thompson's experiments showed 0+0+0 1897 A ball of positive charge that an atom must contain small with negative electrons 'plum negative charges (discovery of pudding' embedded in it electrons). Ernest Rutherford's alpha particle Positively charged nucleus 1909 scattering experiment showed at the centre surrounded nuclear that most of the mass of an atom model by negative electrons was at its centre.

The development of the model of the atom

Rutherford's

1913

Bohr

model

James Chadwick

Provided the evidence to show the existence of neutrons within the nucleus

Niels Bohr proposed that electrons

orbited in fixed shells; this was

supported by experimental

observations.

A beam of alpha particles were directed at very thin gold foil
--

Electrons

orbit the nucleus at

specific distances

Most of the alpha particles passed right through. A few positive alpha particles were deflected by the positive nucleus. A tiny number of particles reflected back from the nucleus.

Two or more elements or compounds not chemically combined together.

Can be separated by one of these methods:

Method	Description	Example
filtration	Separating an insoluble solid from a liquid	To get sand from a mixture of sand, salt and water.
crystallisation	To separate a solid from a solution	To obtain pure crystals of sodium chloride from salt water.
simple distillation	To separate a solvent from a solution	To get pure water from salt water.
fractional distillation	Separating a mixture of liquids with different boiling points	To separate the different compounds in crude oil.
chromatography	Separating substances that move at different rates through a medium	To separate out the dyes in food colouring.

chemical equations	These show how chemical reactions change reactants into products. An energy change usually happens too.	Law of conservation of mass states the total mass of products must equal the total mass of reactants.
word equations	Uses words to show reaction: reactants → products magnesium + oxygen → magnesium oxide	Does not show what is happening to the atoms or the number of atoms.
symbol equations	Uses symbols to show reaction reactants → products 2Mg + O ₂ → 2MgO	Shows the number of atoms and molecules in the reaction. These need to be balanced.

35Cl (75%) and 37Cl (25%) relative atomic mass = ((% isotope 1 x mass isotope 1) + (% isotope 2 x mass isotope 2)) ÷ 100 e.g. $((25 \times 37) + (75 \times 35)) \div 100 = 35.5$