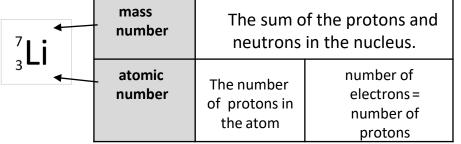

AQA C1a Atomic structure and the periodic table TRIPLE CHEMISTRY

elem com


atom	The smallest part of an element that can exist	Have a radius of around 0.1 nanometres and have no charge
element	Contains only one type of atom	Around 100 different elements each one is represented by a symbol e.g. O, Na, Br
compound	Two or more elements chemically combined	Compounds can only be separated into elements by chemical reactions

nucleus	Contains protons and neutrons	
electron shells	Contains electrons	

name of particle	relative charge	relative mass
proton	+1	1
neutron	0	1
electron	-1	very small

	Electron shell	How many electrons
Electronic structures	1	2
	2	8
	3	8
	4	18

The development of the model of the atom

pre 1900

1897

'plum

pudding'

1909

nuclear

model

1913

Bohr

model

(a+0+ (a+0+ (a+0+

Rutherford's scattering experiment	A beam of alpha particles were directed at very thin gold foil

Tiny solid balls that

could not be divided

A ball of positive charge

with negative electrons

embedded in it

Positively charged nucleus

at the centre surrounded

Electrons

orbit the nucleus at

specific distances

by negative electrons

solid balls made up the different elements. JJ Thompson's experiments showed that an atom must contain small negative charges (discovery of electrons). Ernest Rutherford's alpha particle scattering experiment showed that most of the mass of an atom was at its centre.

Before the discovery of the

electron, John Dalton said these

Niels Bohr proposed that electrons orbited in fixed shells; this was supported by experimental observations.

Most of the alpha particles

Provided the evidence to **James** Chadwick show the existence of neutrons within the nucleus

experiment ()	passed right through. A few positive alpha particles were deflected by the positive nucleus. A tiny number of particles reflected back from the nucleus.
These show how chemical reactions	Law of conservation of mass

mixtures

Two or more elements or compounds not chemically combined together.

Can be separated by one of these methods:

Method	Description	Example
filtration	filtration Separating an insoluble solid from a mixt sand, salt and water	
crystallisation	To separate a solid from a solution To obtain pure crystals of sod chloride from salt water.	
simple distillation	To separate a solvent from a solution To get pure water from salt was	
fractional distillation	Separating a mixture of liquids with different boiling points	To separate the different compounds in crude oil.
chromatography Separating substances that move at different rates through a medium To separate out the dye colouring.		To separate out the dyes in food colouring.

chemical equations	These show how chemical reactions change reactants into products. An energy change usually happens too.	Law of conservation of mass states the total mass of products must equal the total mass of reactants.
word equations	Uses words to show reaction: reactants → products magnesium + oxygen → magnesium oxide	Does not show what is happening to the atoms or the number of atoms.
symbol equations	Uses symbols to show reaction reactants \rightarrow products $2Mg + O_2 \rightarrow 2MgO$	Shows the number of atoms and molecules in the reaction. These need to be balanced.

atomic mass sedotosi	atoms of the same element with the same number of protons and different numbers of neutrons
----------------------	--

³⁵Cl (75%) and ³⁷Cl (25%) relative atomic mass = ((% isotope 1 x mass isotope 1) + (% isotope 2 x mass isotope 2)) ÷ 100 e.g. $((25 \times 37) + (75 \times 35)) \div 100 = 35.5$