
C3 Quantitative Chemistry. RP2 = Titrations		The mole (mol)		Conservation of mass	
Triple Chemistry Page 1 of 2		A mole represents the number of particles in a reaction. These particles can be ions,		The law of conservation of mass $2 Mg + O_2 \longrightarrow 2 MgO$	
Keywords				states that no atoms are lost	or 2 × 24 32 2 × 40
chemical formula	Represents chemicals with symbols and numbers	electrons, atoms, molecules etc. The number of particles in one mole is the same as Avogadro's constant – 6.02 x 10 ²³ .		made during a chemical reaction.	
moleUsed to represent the number of particles. One mole is 6.02 x 1023 particles.		Example:		mass of the products = mass of the reactantsAlsoMr products = Mr reactants	
limiting reactant	The reactant that is completely used up during a reaction – this limits the amount of product.	1 mole of NaBr contains 6.02 x10 ²³ Na ⁺ ions		 In an open system, the mass can change during an experiment involving gases as the gas can be 'added' or 'escape'. If a reactant is a gas, the mass increases (eg. 2 Ca + O₂ → 2 CaO). If a product is a gas, the mass decreases (eg. ZnCO₃ → ZnO + CO₂) 	
excess	More of a chemical than you need for a reaction.	Relative formula mass (M_r) The M _r is the mass of one mole of a			
titration	Method used to accurately determine an unknown concentration	chemical in grams. It is found by adding the mass numbers of each atom in a chemical:		Uncertainty in measurements	
concordant	Results within 0.1 cm ³ of each other	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Example: A beaker containing 100 cm ³ water was heated by 20 °C using a Bunsen burner. The experiment was repeated, and the times taken in seconds were 90 , 100 , 93 , 95 . 1. Calculate the mean : $90 + 100 + 93 + 95 = \frac{378}{4} = 94.5 \text{ s}$ (add numbers then divide by number of numbers) 2. Calculate the range: $100 - 90 = 10 \text{ s}$	
yield	The amount (mass, volume etc) of product product produced in a reaction				
mean	The average of a set of numbers				
range	The highest minus the lowest number	Mole equations			
uncertainty	How close the highest and lowest numbers are to the mean	s	mass (g)	(<i>highest – lowest</i>) 3. Calculate the uncertainty:	$\frac{10}{2} = 5 s$
Concentrations of solutions (in g/dm ³)		Masses	$n = \frac{m}{M_r}$	(range \div 2) 4. Result is mean \pm uncertainty: 94.5 \pm 5 s	
This is the mass of solute in 1 dm ³ (1 litre) of solution. The concentration		moles (mol) mass (g/mol)		Using the mole equations	
will increase if solute is added, or solvent is removed.		Gases	At room temperature and pressure (20 °C, 1 atm) one mole of any gas occupies a volume of 24 dm ³ . Therefore this equation is used: $n = \frac{v}{24}$	Calculations can be performed by inputting numbers into the appropriate equation.	<u>Example:</u> Find the mass of 0.75 moles of Na ₂ O.
Example: Find the concentration of the solution formed when 2 g of HCl is dissolved in $400 \text{ cm}^3 \text{ of H}_2 \text{O}$.					$M_r Na_2 O = 23 x 2 + 16 = 62$ m = n x $M_r = 0.75 x 62 = 46.5 g$
Step 1: Convert cm ³ to dm ³ volume in dm ³ = $\frac{400}{1000}$ = 0.4 dm ³				Sometimes two equations need to be used. As the equations are all linked by the number of moles: 1. Find the moles 2. Answer the question	Example: What mass of O_2 gas has a volume of 36 dm ³ ?
Step 2: Use equation		Solutions	$n = c \times v$ $\stackrel{\text{index}}{\underset{\text{cm}^3}{\text{index}}} a^{\text{number of moles (mol)}}$ $\stackrel{\text{number of moles (mol)}}{\underset{\text{(mol/dm^3)}}{\text{occentration volume (dm^3)}}}$		1. n = $\frac{v}{24} = \frac{36}{24} = 1.5 \text{ mol}$ 2. m O ₂ = n x M _r (M _r O ₂ = 2 x 16 = 32)
$\mathbf{c} = \frac{m}{v} = \frac{2}{0.4} = 5 \ g/dm^3 \qquad \qquad \underbrace{\begin{array}{c} \mathbf{c} \times \mathbf{v} \\ \text{concentration} \\ (g/dm^3) \end{array}}_{\text{volume (dm^3)}} $					$= 1.5 \times 32 = 48 \text{ g}$

