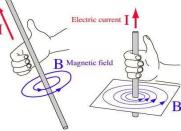
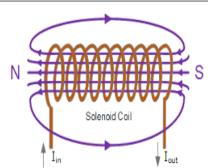

AQA P7 Magnetism and Electromagnetism Triplephysics



Permanent and Induced Magnetism

Key word	Definition	Detail
magnetic material	materials attracted by magnets	The magnet uses a non-contact force to attract magnetic materials
north seeking pole	end of a magnet pointing north	A compass needle is a bar magnet and points north.
south seeking pole	end of a magnet pointing south	Like pole (N-N) repel, unlike pole (N-S) attract.
magnetic field	region of force around a magnet	Field lines close together → strong field → large force.
		Field lines far apart → weak field → small force.
		Field/force is strongest at the poles.
		Arrows on field lines are drawn in the direction of north to south.
permanent	a magnet that produces its own magnetic field	Will repel or attract other magnets. Will attract magnetic materials.
induced	a temporary magnet	Becomes a magnet when placed in a magnetic field.


Electromagnetism

- Current flowing through a wire produces a magnetic field I around it.
- thumb → direction of current
- fingers → direction of magnetic field

- If the current is small, the magnetic field is weak.
- If the current is large, the magnetic field is strong.
- Further away from the wire the magnetic field is weaker.
- If the current is reversed, the direction of the magnetic field reverses.

- A solenoid is a coil of wire with a current flowing through it
- The magnetic field from each loop (turn) adds to the next
- The advantage of an electromagnet like this is it can be turned off

An electromagnet can be made stronger by:

- using a larger current
- adding more turns of the wire
- putting the turns of the wire closer together
- using an iron core through the coil

Fleming's Left- Hand Rule and the Motor Effect

Key word	Definition	Detail
magnetic flux	lines drawn to show magnetic field	The closer the lines are together the stronger the magnet
magnetic flux density, B	number of lines of magnetic flux in a given area	Measurement of the strength of the magnetic force

When a current passes through a wire it produces a magnetic field.

If that wire is then placed between the poles of a permanent magnet then the magnetic fields of both interact, causing a force and the wire moves.

If the current and

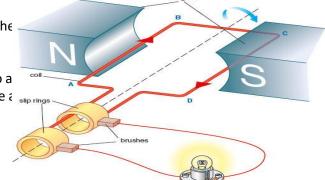
The size of the force can be calculated using the equation: force (N) = magnetic flux density (Tesla) x current (A) x length (m)

F = BxIxl

To find the direction of movement of the wire we must use **Fleming's left hand rule**:

Thumb \rightarrow direction of the force and so movement, F. First finger \rightarrow direction of magnetic field, B Second finger \rightarrow direction of current, I

Application of **Fleming's left hand rule** can explain the motor effect:


- A coil of wire rotates about an axle.
- Current flows through the wire causing an upward movement on one side of the coil and a downward movement on the other side of the coil and so the coil rotates.
- To reverse the direction of rotation, reverse the direction of the current or the magnetic field.

<u>Use: Loudspeaker</u> - a changing current in a magnetic field, the force on the wire moves backwards and forwards as the current changes. The coil is connected to a diaphragm. As the diaphragm moves is produces sound waves.

The Generator Effect

The exact reverse of the motor effect – moving a conducting wire through a magnetic field produces a potential difference (voltage) which induces a current → electricity from movement

- Coil of wire rotating inside a magnetic field, the ends of the wire are connected to slip rings
- This produces an alternating current
- Not all devices use alternating current and so a split ring commutator can be used to produce a direct current, the device is known as a dynamo.

<u>Use: Microphones</u> – uses a diaphragm connected to a coil of wire in a magnetic field to convert pressure variations in sound into variations in current in electrical circuits.

Transformers

- **Step up** transformers increase voltage and decrease current to increase efficiency by reducing the amount of heat lost
- Step down transformers decrease voltage and increase current to make it safer for domestic use

Voltage across the primary coil x number of coils = voltage across the secondary coil x number of coils

the magnetic field

direction there is no

are in the same

force

 $V_p \times n_p = V_s \times n_s$