AQA B1a Cell Structure Combined Higher (page 1 of 2)

Required practical for this topic: Microscopy

Prokaryotic cells	These cells include bacterial cells and are much smaller in comparison. They have cytoplasm and a cell membrane surrounded by a cell wall. The genetic material is not enclosed in a nucleus. It is a single DNA loop and there may be one or more small rings of DNA called plasmids.
Eukaryotic cells	These cells include plant and animal cells. These cells have a cell membrane, cytoplasm and genetic material enclosed in a nucleus.

Cell differentiation

important?

Stem cells

Specialised cells

Why is cell differentiation

animal cell

cytoplasm	Site of chemical reactions in the cell	Gel like substance containing enzymes to catalyse the reactions
nucleus	Contains genetic material	Controls the activities of the cell and codes for proteins
cell membrane	Semi permeable	Controls the movement of Substances in and out of the cell
ribosome	Site of protein Synthesis	MRNA is translated to an amino acid Chain
mitochondrion	Site of respiration	Where energy is released for the cell to function

Bacterial cell	cell membrane	Semi permeable	Controls the movement of substances in and out of the cell
bacterial DNA		Not in nucleus. Floats in cytoplasm	Controls the function of the cell
0	cell wall	NOT made of cellulose	Supports and strengthens the cell
0	Plasmid	Small rings of DNA	Contain additional genes
	cytoplasm	Site of chemical reactions in the cell	Gel like substance containing enzymes to catalyse the reactions

stage of development.

properly.

Cells change to form different types of cells. Many types of plant cells can differentiate throughout life. Animal cells differentiate at an early

turn into different types so they can make up different tissues and organs. Without this ability our bodies wouldn't develop or function

As a cell differentiates it acquires different sub-cellular structures to enable it to carry out a certain function. It has become a specialised cell.

Undifferentiated cells. They can divide to form more cells of the same

	/	41		ell plus these	1
DIANT CEIL	icontain aii	the parts of	an anımaı cı	eli nilis these	extrasi

1				1
				ł
1	6	/	10	ı
1				-
1.4).	
			0	

obiective lens

stage

light source

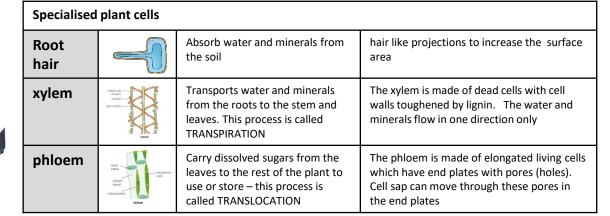
permanent vacuole	Contains cell sap	Keeps cell turgid, contains sugars and salts in solution
cell wall	Made of cellulose	Supports and strengthens the Cell (algal cells have a cell wall too)
chloroplast	Site of photosynthesis	Contains chlorophyll, absorbs light energy

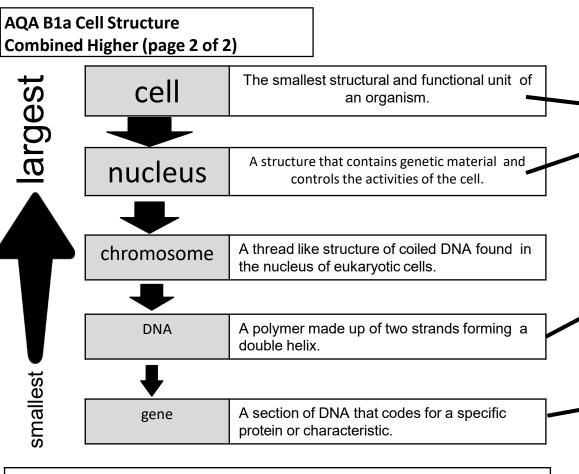
Made of cellulo	ose	Supports and strengthens the Cell (algal cells have a cell wall too)
Site of photosynthesis	5	Contains chlorophyll, absorbs light energy
Standard		ember this equation:

PREFIXES			
Prefix	Multiple	Standard form	
centi (cm)	1 cm = 0.01 m	x 10 ⁻²	
milli (mm)	1 mm = 0.001 m	x 10 ⁻³	
micro (μm)	1 μm= 0.000 001 m	x 10 ⁻⁶	
nano (nm)	1nm = 0.000 000 001 m	x 10 ⁻⁹	

eyepiece lens

focusing wheel

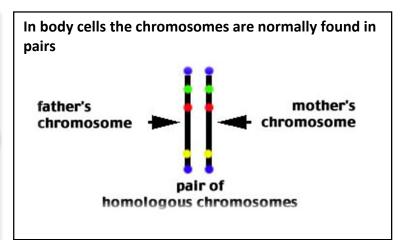

magnification (M) = size of image (I) real size of the object (A)

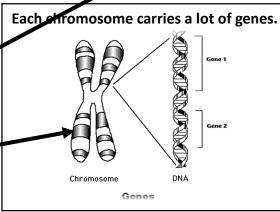


microscopy techniques have developed over time. Electron microscopy has increased our understanding of sub-cellular structures because they have a much higher magnification and resolution than a light microscope. This means that they can be used to study cells in much finer detail. This has enabled biologists to see and understand many more sub-cellular structures.

Specialised animal cells				
nerve	李	Carry electrical signals	Long branched connections and insulating sheath	
sperm		Fertilise an egg	Streamlined with a long tail acrosome containing enzymes large number of mitochondria	
muscle	and man fel airs.	Contract to allow movement	Contains a large number of mitochondria. They are also long	

type or can differentiate to form other types of cells.




Chromosome

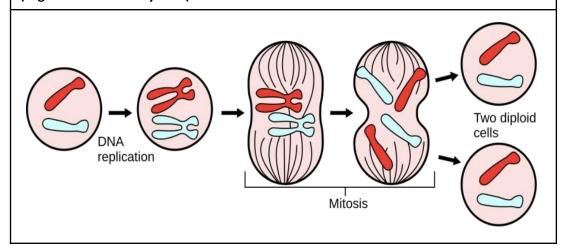
DNA

Nucleus

Gene

	Donor egg nucleus is removed	
		NEW EMBRYO
DONOR EGG		Nucleus is transplanted
Therapeutic cloning		from the patient's cell to the egg

Stem cell type	function	Uses	
Human Embryonic stem cells (from human embryos)	Can be cloned and made to differentiate into most cell types	Treatment with stem cells (including therapeutic cloning) may be able to help	
Adult bone marrow stem Can form many types of human cells e.g. blood cells		conditions such as diabetes and paralysis.	
Meristems (plants – in the growing tips of shoots and roots)	Can differentiate into any plant cell type throughout the life of the pant.	Used to produce clones quickly and economically for: Rare species can be cloned to protect from extinction crop plants with pest or disease resistance can be cloned in large quantities for farmers to use.	


	Stem cell advantages	Stem cell disadvantages
•	In therapeutic cloning, an embryo is made with the same genes as the patient so the body does not reject the tissue. With adult bone marrow tissue can be matched to avoid rejection.	 There is a risk of infection with therapeutic cloning e.g. transfer of viruses. With adult bone marrow only a few types of cells can be formed. Some people object on religious grounds Some people object on ethical grounds.

Cells divide in a series of stages called the cell cycle.

During the cell cycle the genetic material is doubled and then divided into two identical cells. There are three stages:

Stage 1	growth	Increase the number of sub-cellular structures e.g. ribosomes and mitochondria.
Stage 2	DNA synthesis	DNA replicates to form two copies of each chromosome.
Stage 3	mitosis	One set of chromosomes is pulled to each end of the cell and the nucleus divides. Then the cytoplasm and cell membranes divide to form two identical cells.

Mitosis is important in the growth and development of multicellular organisms (organisms with many cells)

