AQA P5a Forces - the basics Triple Physics		Required Practical for Hooke's Law	this topic:	
s and	Mass	How much matter something is made of		Measured in kilograms (kg)
ty, mas weight	Weight	The force acting on an object due to gravity		Measured in newtons (N)
Gravi	Gravitational field strength	How much weight is experienced per kilogram of mass		On Earth, this is 9.8 N/kg
Weight = mass x gravitational field strength (W = m x g)				

tions	Unit	For example: newton (N), kilogram (kg), metre (m)		
	kilo	For example: kilonewton (kN), kilogram (kg)	1000 or 1x10 ³	
efini	Mega	For example: meganewton (MN)	1,000,000 or 1x10 ⁶	
Units and d	Velocity	Speed in a given direction	m/s	
	Distance	How far	m	
	Displacement	Distance in a given direction	e.g. 5 metres east	
	Centre of mass = the single point through which the weight of an object acts			

nd vectors	Scalar	A quantity that only has magnitude (size), e.g. mass, time, temperature, energy, speed	Arrows can be used to show vectors: Length of the arrow = size of the vector
Scalars a	Vector	A quantity that has magnitude and direction, e.g. force, velocity, momentum	

rk done and energy transfer	Work done	When work is done, energy is transferred. Work done = force x distance (W = Fs)	
	1 joule of work is done when 1 newton of force moves an object 1 metre in the direction of the force		
	If the force is at right angles to the direction of movement then no work is done		
Wo	If work is done against friction then the thermal energy store of the object will increase		

Forces	A force can be a push or a pull	Examples are stretch, squash and turn	
	Contact forces are exerted between two objects when they touch	E.g. friction, air resistance and tension	
	Non-contact forces are exerted between two objects without touching	E.g. gravity, magnetism, electrostatic forces	
	Resultant force = the single force which has the same effect as all the forces on an object		
	Two forces acting in the same direction	are added together	
	Two forces acting in opposite directions	are taken away	

A free body diagram shows the magnitude and 1N 5N 10N direction of all the forces on an object 1N The object in the diagram would experience a force of 5N to the left. This is called resolving forces. You can split a force into two component forces The combined forces have the same acting at right angles to each other. effect.

Forces and elasticity	Forces canaccelerate or deform an object		
	Elastic deformation	An object has been stretched but can return to its original length	
	Inelastic deformation	An object is stretched and can't return to its original length	
	Extension =	Current length – original length	
	Hooke's law	The extension is directly proportional to the force stretching an object	
	Limit of proportionality	The point at which a force-extension graph stops being a straight line and Hooke's law stops being true	
	Elastic potential energy	Energy stored in a stretched spring	
	Work done on a spring	Increases the elastic potential energy store and thermal energy store of the spring	
Hooke's law: force = spring constant x extension (F = k x e)			
elastic potential energy = $\frac{1}{2}$ x spring constant x extension ² (E = $\frac{1}{2}$ ke ²)			