AQA P5c Newton's Laws

Triple Physics

Required Practical for this topic: F = ma

Newton's Laws	Newton's 1 st Law	If an object experiences zero resultant force it does not accelerate	
	Newton's 2 nd law	The resultant force equals the mass × acceleration	
	The greater the resultant force	The greater the acceleration	
	The greater the mass	The smaller the acceleration for a given force	
	Inertia	The tendency not to accelerate	
	Forces	Occur in pairs of the same type	
	Newton's 3 rd law	If object A exerts a force on object B, then object B exerts a force of equal magnitude and opposite direction on object A	
	When brakes are applied	Friction does work	
	When brakes are applied	The kinetic energy store of the wheels decreases and the thermal energy store of the brakes increases.	
Force = mass \div acceleration (F = m × a)			

Momentum and collisions	Thinking distance	The distance travelled as the driver reacts	
	Braking distance	The distance travelled as the driver applies the brakes	
	Stopping distance	Thinking distance + Braking distance	
	Braking distance increases with	Higher speed, higher mass, poor weather, poor vehicle conditions	
	Thinking distance increases with	Higher speed, drink, drugs, distractions	
	Momentum unit	Kilogram metres per second (kgm/s)	
	Closed system	A group of objects with no external forces acting on them	
	Principle of conservation of momentum	For any interaction in a closed system the total momentum before and afterwards is equal.	
	Momentum	is a vector	
	During a collision between two objects	Momentum is conserved and the two forces are equal in magnitude and opposite in direction.	
	During a collision the force can be reduced	By increasing the collision time	
	Safety features that increase collision time are	Cycle helmets, air bags, seat belts, crumple zones	
Momentum = mass × velocity (p = mv)			
Force = change in momentum \div time (F = m $\Delta v \div t$)			