

AQA C1a Atomic structure and the periodic table TRIPLE CHEMISTRY

pun ds	Atom	The smallest part of an element that can exist	Have a radius of around 0.1 nanometres and have no charge (0).
toms, ents a poun	Element	Contains only one type of atom	Around 100 different elements each one is represented by a symbol e.g. O, Na, Br.
At elem com	Compound	Two or more elements chemically combined	Compounds can only be separated into elements by chemical reactions.

Sub atomic
particles

Name of Particle	Relative Charge	Relative Mass
Proton	+1	1
Neutron	0	1
Electron	-1	Very small

	Electron shell	How many electrons?
S C	1	2
roni ture	2	8
Electronic structures	3	8
E St	4	18

	Electron shell	How many electrons?
ပ	1	2
roni ture	2	8
Electronic structures	3	8
E S	4	18

Before the discovery of the Tiny solid spheres that electron, John Dalton said these Pre 1900 could not be divided solid sphere made up the different elements. JJ Thompson's experiments showed (a+0+ (a+0+ (a+0+ 1897 A ball of positive charge that an atom must contain small with negative electrons 'plum negative charges (discovery of pudding' embedded in it electrons). Ernest Rutherford's alpha particle Positively charged nucleus 1909 scattering experiment showed at the centre surrounded nuclear that the mass of an atom was model by negative electrons concentrated at its centre. Niels Bohr proposed that electrons 1913 **Electrons** orbited in fixed shells; this was orbit the nucleus at **Bohr** supported by experimental specific distances model observations.

The development of the model of the atom

Rutherford's

James	
Chadwick	

Provided the evidence to show the existence of neutrons within the nucleus

scattering experiment	A beam of alpha particles are directed at a very thin gold foil

Most of the alpha particles passed right through. A few (+) alpha particles were deflected by the positive nucleus. A tiny number of particles reflected back from the nucleus.

Method	Description	Example
Filtration	Separating an insoluble solid from a liquid	To get sand from a mixture of sand, salt and water.
Crystallisation	To separate a solid from a solution	To obtain pure crystals of sodium chloride from salt water.
Simple distillation	To separate a solvent from a solution	To get pure water from salt water.
Fractional distillation	Separating a mixture of liquids each with different boiling points	To separate the different compounds in crude oil.
Chromatography	Separating substances that move at different rates through a medium	To separate out the dyes in food colouring.

Chemical equations	These show how chemical reactions change reactants into products. An energy change usually happens too.	Law of conservation of mass states the total mass of products must equal the total mass of reactants.
Word equations	Uses words to show reaction: reactants → products magnesium + oxygen → magnesium oxide	Does not show what is happening to the atoms or the number of atoms.
Symbol equations	Uses symbols to show reaction reactants → products 2Mg + O ₂ → 2MgO	Shows the number of atoms and molecules in the reaction. These need to be balanced.

Atoms of the same elem with the same number protons and different numbers of neutrons

³⁵Cl (75%) and ³⁷Cl (25%) Relative atomic mass = (% isotope 1 x mass isotope 1) + (% isotope $2 \times \text{mass isotope } 2) \div 100$

e.g. $(25 \times 37) + (75 \times 35) \div 100 = 35.5$