AQA C1b Atomic structure and the periodic table Triple Chemistry

1 H	Alkali metals					The Periodic table						3	Halo; 4	gens 5	6	Nc 7	oble g 0 [/] He	ases
11	R۵	ĺ									1	R	C	N	0	F	Νο	
																•		
Na	Mg	Transition metals								AI	Si	Ρ	S	CI	Ar			
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe	
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn	
Fr	Ra	Ac Rf Db Sg Bh Hs Mt ? ? Metals to the left of the dar							e dark right	(

	Metals	Form positive ions. Conductors, high meltingand boiling points, ductile, malleable							
No	n-metals	Form negative ions. Insulators, low melting and boiling points							
Group 7 – the Halogens	Halogens Each mole	are made ecule cont atoms	of molecules. ains a pair of	Halogen	in the				
	Meltin increase the top, 1	ig and boil down the then liquid	ing points group (gas at , then solid)	The atom he	elements ble				
	Reactivity	decreases	down the group	As the ato is further f les	nilies of e riodic Ta				
With metals	Forms a halic	metal le	metal + haloge halid e.g. sodium + o sodium ch	en → metal e chlorine → Iloride	e.g. 2Na + Cl ₂ → 2NaCl	Important fan Pe			
With hydrogen	Forms a hydrogen halide		hydrogen + halogen → hydrogen halide e.g. hydrogen + bromine → hydrogen bromide		e.g. Cl₂+H₂ → 2HCl				
With solutions of halides	A more reactive halogen will displace the less reactive halogen from the salt		chlorine + potassium bromide → potassium chloride + bromine		e.g. Cl ₂ +2KBr → 2KCl + Br ₂				

ЭС		C	Before the liscovery of protons	Elements used to be arranged in order of atomic weight	Early periodic tables were incomplete. Some elements were placed in inappropriate groups if the strict order of atomic weights was followed				
lopment of th	riodic table	M	What did endeleev do?	Mendeleev left gaps for elements that hadn't been discovered yet	Elements with properties predicted by Mendeleev were discovered and filled in the gaps. Knowledge of isotopes explained why order based on atomic weights was not always correct				
Deve	Pe	No ar or	ow, elements e arranged in der of atomic number	Elements with similar properties are in columns called groups	Elements in the same group have the same number of outer shell electrons and elements in the same period (row) have the same number of electron shells				
:	- Alkali als	Tł w	ney are very rea ater and chlorin	active with oxygen, ne	They only have 1 electron in their outer shell. They form +1 ions				
	Group 1 - met:	Tł in	ne reactivity of creases as you	Group 1 elements go down the group	As you go down the group the atoms get bigger. This means that the negative outer electron is further from the positive nucleus so it is more easily lost				
	With oxygen		orms a metal oxide	metal + oxygen –	→ metal oxide	e.g. 4Na + O ₂ \rightarrow 2Na ₂ O			
	With water	F h	orms a metal ydroxide and hydrogen	metal + water → m hydrog	etal hydroxide + gen	e.g. 2Na + 2H ₂ O \rightarrow 2NaOH + H ₂			
	With chlorine	F	orms a metal chloride	metal + chlorine →	metal chloride	e.g. 2Na + Cl ₂ → 2NaCl			
	- Noble es	Tł fo	ney are very un orm molecules.	reactive and don't	They are unreactive because they already have full outer shells of electrons.				
	Group 0 gas	b Th po gr	ney are all gase pints increase a oup.	s but their boiling s you go down the	The atomic mass increases as you go down the group. The atoms get heavier and more energy is needed to make the element boil.				
	metals (GCSE stry only)		Compared to are less react melting point	Group 1 metals, the t ive, harder, denser an s	ransition metals Id have higher	Cu ²⁺ is blue Ni ²⁺ is pale green and is a catalyst for the hydrogenation of fats when making margarine			
	Transition Chemis		Some special include: form as catalysts; f	properties of transition ing ions with different orming coloured com	the Haber process Fe ³⁺ is reddish brown Mn ²⁺ is pale pink				