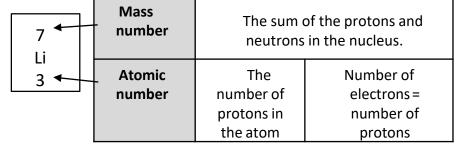

AQA C1a Atomic structure and the periodic table **COMBINED HIGHER**

Atoms, elements and compounds


Atom	The smallest part of an element that can exist	Have a radius of around 0.1 nanometres and have no charge (0).
Element	Contains only one type of atom	Around 100 different elements each one is represented by a symbol e.g. O, Na, Br.
Compound	Two or more elements chemically combined	Compounds can only be separated into elements by chemical reactions.

Central nucleus	Contains protons and neutrons
Electron shells	Contains electrons

Name of Particle	Relative Charge	Relative Mass
Proton	+1	1
Neutron	0	1
Electron	-1	Very small

	she
ပ ပ	1
roni	2
Electronic structures	3
E S	4

Pre 1900		Tiny solid spheres that could not be divided	Before the discovery of the electron, John Dalton said these solid sphere made up the different elements.
1897 'plum pudding'	9+9+ 9+9+ 9-+	A ball of positive charge with negative electrons embedded in it	JJ Thompson's experiments showed that an atom must contain small negative charges (discovery of electrons).
1909 nuclear model		Positively charged nucleus at the centre surrounded by negative electrons	Ernest Rutherford's alpha particle scattering experiment showed that the mass of an atom was concentrated at its centre.
1913 Bohr model		Electrons orbit the nucleus at specific distances	Niels Bohr proposed that electrons orbited in fixed shells; this was supported by experimental observations.

The development of the model of the atom

scattering experiment

Rutherford's

James	
Chadwick	

Provided the evidence to show the existence of neutrons within the nucleus

	Electron shell	How many electrons?
Electronic structures	1	2
	2	8
	3	8
	4	18

A beam of alpha particles are directed at a very thin gold foil

Most of the alpha particles passed right through. A few (+) alpha particles were deflected by the positive nucleus. A tiny number of particles reflected back from the nucleus.

Two or more elements or compounds not chemically combined together

Can be separated by physical processes.

Method	Description	Example	
Filtration	Separating an insoluble solid from a liquid	To get sand from a mixture of sand, salt and water.	
Crystallisation	To separate a solid from a solution	To obtain pure crystals of sodium chloride from salt water.	
Simple distillation	To separate a solvent from a solution	To get pure water from salt water.	
Fractional distillation	Separating a mixture of liquids each with different boiling points	To separate the different compounds in crude oil.	
Chromatography	Separating substances that move at different rates through a medium	To separate out the dyes in food colouring.	

Chemical equations	These show how chemical reactions change reactants into products. An energy change usually happens too.	Law of conservation of mass states the total mass of products must equal the total mass of reactants.
Word equations	Uses words to show reaction: reactants → products magnesium + oxygen → magnesium oxide	Does not show what is happening to the atoms or the number of atoms.
Symbol equations	Uses symbols to show reaction reactants \rightarrow products $2Mg + O_2 \rightarrow 2MgO$	Shows the number of atoms and molecules in the reaction. These need to be balanced.

Relative	atomic	mass
----------	--------	------

Isotopes

Atoms of the same element with the same number of protons and different numbers of neutrons

³⁵Cl (75%) and ³⁷Cl (25%)

Relative atomic mass = (% isotope 1 x mass isotope 1) + (% isotope 2 x mass isotope 2) ÷ 100 e.g. (25 x 37) + (75x 35) ÷ 100 = 35.5