AQA C1b Atomic structure and the periodic table **Combined Higher** Alkali metals Noble gases The Periodic Halogens table 1 2 6 0 5 Η He Li Be С F Ne Ν 0 Transition metals Si Na Mg Р S CI Ar K Ca Sc Ti Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Rb Sr Xe | Ir | Pt |Au |Hg Cs Ba La Hf Ta W Re Os TI Pb Bi Po At Rn Fr Ra Ac Rf Db Sg Bh Hs Mt Metals to the left of the dark ? line, non-metals to the right Form positive ions. Conductors, high melting and boiling points, Metals ductile, malleable Form negative ions. Insulators, low melting and boiling points **Non-metals**

he	Halogens are made of molecules. Each molecule contains a pair of atoms		Halogen atoms have 7 electrons in their outer shells. They form -1 ions	
Group 7 – the Halogens	Melting and boiling points increase down the group (gas at the top, then liquid, then solid)		The atomic mass of the halogens gets heavier as you go down	
0 ±	Reactivity decreases down the group		As the atoms get bigger, the nucleus is further from the outer shell so has less pull on electrons	
With metals	Forms a metal halide	metal + haloge halid e.g. sodium + o sodium ch	e chlorine ->	e.g. 2Na + Cl ₂ → 2NaCl
With hydrogen	Forms a hydrogen halide	hydrogen + halogen → hydrogen halide e.g. hydrogen + bromine → hydrogen bromide		e.g. Cl₂+ H₂ → 2HCl
With solutions of halides	A more reactive halogen will displace the less reactive halogen from the salt	chlorine + potassium bromide → potassium chloride + bromine		e.g. Cl ₂ +2KBr → 2KCl + Br ₂

mportant families of elements in the	Periodic Table
Important families of elements in	Periodic Table

Development of the Periodic table

Before the discovery of protons	Elements used to be arranged in order of atomic weight	Early periodic tables were incomplete. Some elements were placed in inappropriate groups if the strict order of atomic weights was followed
What did Mendeleev do?	Mendeleev left gaps for elements that hadn't been discovered yet	Elements with properties predicted by Mendeleev were discovered and filled in the gaps. Knowledge of isotopes explained why order based on atomic weights was not always correct
Now, elements are arranged in order of atomic number	Elements with similar properties are in columns called groups	Elements in the same group have the same number of outer shell electrons and elements in the same period (row) have the same number of electron shells

_					
	- Alkali als	They are very reactive with oxygen, water and chlorine		They only have 1 electron in their outer shell. They form +1 ions	
Group 1	Group 1 - A	The reactivity of Group 1 elements increases as you go down the group		As you go down the group the atoms get bigger. This means that the negative outer electron is further from the positive nucleus so it is more easily lost	
	With oxygen	Forms a metal oxide	metal + oxygen -> metal oxide		e.g. 4Na + O ₂ → 2Na ₂ O
	With water	Forms a metal hydroxide and hydrogen	metal + water → metal hydroxide + hydrogen		e.g. 2Na + 2H ₂ O → 2NaOH + H ₂
	With chlorine	Forms a metal chloride	metal + chlorine → metal chloride		e.g. 2Na + Cl ₂ → 2NaCl

- Noble ses	They are very unreactive and don't form molecules.	They are unreactive because they already have full outer shells of electrons.
Group 0 gas	They are all gases but their boiling points increase as you go down the group.	The atomic mass increases as you go down the group. The atoms get heavier and more energy is needed to make the element boil.