Knowledge organiser Matter Big idea: Matter Y8 topic: Elements

I have already learned: In KS2: Solids, liquids and gases In Y7: Particle model and separating mixtures This topic links to: Periodic table (Y8) Unit C1 – Atomic structure and the periodic table (Y9) Unit C2 – bonding, structure and the properties of matter (Y9)

It is important to study about Elements because...

All substances are made up of elements, compounds or mixtures. We need to be able to identify what different substances are made of and put together atoms in different ways to make new medicines, technology and building materials.

Possible careers involving Elements are...

Analytical chemist (finding out what substances are made of or how much there is of something) Forensic scientist Pharmacologist (designing and making new medicines) Materials scientist

KNOWLEDGE ORGANISER BIG IDEA: MATTER TOPIC: ELEMENTS

Key Word	Definition	
element	What all substances are made up of, and which contain only one type of atom.	
atom	The smallest particle of an element that can exist.	
molecule	Two to thousands of atoms joined together. Most non-metals exist either as small or giant molecules.	
compound	Pure substances made up of two or more elements strongly joined (bonded) together.	
chemical symbol	A one or two letter code used to identify an element	
chemical formula	Shows the elements present in a compound and their relative proportions e.g. $CaCO_3$	
periodic table	A table that contains all of the known elements. It groups together elements with similar properties.	

Chemical formulae are used to show how many **atoms** of each **element** exist in a **compound**. The small (subscript) number to the right of the **chemical symbol** tells you how many **atoms** are present.

The **chemical formula** for calcium carbonate is $CaCO_3$. Each **molecule** of calcium carbonate therefore contains: 1 atom of calcium (Ca), 1 atom of carbon (C) and 3 atoms of oxygen (O).

Gases like oxygen and hydrogen are diatomic, they travel round in pairs. Their formulae are O_2 and H_2 .

In each of these diagrams the circles represent atoms.

An **element** is made from one type of **atom**, they cannot be broken down into other substances. **Compounds** are made from two or more different types of **atom** strongly joined (bonded) together. They are known as pure substances because although there is more than one type of atom present, the **molecules** are all the same. They can be broken down into simpler substances during chemical reactions.

Naming compounds can be a bit tricky, but learning these common examples will help you.

Name	What does it contain?	
hydroxide	Includes hydrogen and oxygen atoms. The formula for sodium hydroxide is Na OH .	
nitrate	Includes nitrogen and oxygen atoms. The formula for sodium nitrate is Na NO ₃ .	
sulfate	Includes sulfur and oxygen atoms. The formula for copper sulfate is $CuSO_4$.	
carbonate	Includes carbon and oxygen atoms. The formula for calcium carbonate is Ca CO ₃ .	
oxide	Includes oxygen and another element. The name changes depending how many oxygen atoms are present. carbon mon oxide (C O - 1 oxygen atom) carbon di oxide (C O ₂ - 2 oxygen atoms) sulfur tri oxide (S O ₃ - 3 oxygen atoms)	

The **periodic table** contains over 100 different **elements** and their **chemical symbols**. These are some of the common ones that you are expected to recognise. The first letter is always a capital letter and the second letter (if there is one) is lower case.

Element Name	Chemical Symbol
hydrogen	Н
oxygen	0
nitrogen	Ν
carbon	С
iron	Fe
zinc	Zn
copper	Cu
sulfur	S
aluminium	AI
iodine	I
bromine	Br
chlorine	CI
sodium	Na
potassium	К
magnesium	Mg

