AQA C7a Crude Oil TRIPLE CHEMISTRY

Crude oil, hydrocarbons and alkanes				
	crude oil	mixture of hydrocarbons - a finite resource		
	hydrocarbon	molecule made of only hydrogen and carbon		
	crude oil formed	from ancient biomass, mainly plankton, which was buried in mud millions of years ago		
	alkane	saturated hydrocarbon		
	saturated	only single bonds		
	general formula	C_nH_{2n+2} for example : C_2H_6 C_6H_{14}		

Fractional distillation

Crude oil must be separated into fractions, which contain a similar number of carbon atoms.

Different fractions can be used to form fuels such as petrol, diesel, kerosene. They can also be used as "feedstocks" (raw materials) to make solvents, lubricants, polymers, detergents.

Fractional distillation:

- At the bottom of the column, crude oil is heated and hydrocarbons evaporate.
- The column is hot at the bottom and cooler at the top.
- Fractions have <u>different boiling points</u>.
- They condense at different heights.
- Small molecules have lower boiling point.
- Large molecules have higher boiling points.

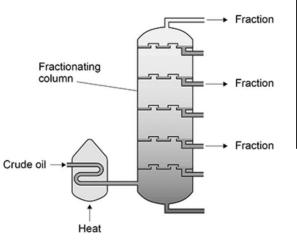
(do not learn specific fractions or boiling points)

Properties of hydrocarbons

Hydrocarbons with bigger molecules have higher boiling points, are more viscous, and less flammable. This means shorter hydrocarbons are usually better fuels.

boiling point	temperature substance turns from liquid into gas, or gas into liquid
viscous	thick and sticky
flammable	can burn easily
8	

Combustion means burning. Combustion of hydrocarbons releases energy. Carbon and hydrogen are oxidised, and carbon dioxide and water are produced during "complete" combustion.


H H H-C-C-H H H
Ethane (C ₂ H ₆)

Propane (C_3H_8)

H—C—H H

Methane (CH₄)

Butane (C₄H₁₀)

Cracking	
cracking	breaking down hydrocarbons into smaller, more useful molecules
conditions for cracking	cracking requires <u>high temperatures</u> and either <u>steam</u> or a <u>catalyst.</u>
products of cracking	 smaller alkanes, which are useful as fuels so in high demand another type of hydrocarbon: <u>alkenes</u>
alkenes	more reactive than alkanes used to produce polymers (plastics)
tests for alkenes	bromine water means a small amount of bromine dissolved in water. It is orange. alkanes do not react with bromine water.
	alkenes react with bromine water, and turn it from <u>orange</u> to <u>colourless</u>