AQA B5 Homeostasis and Response: Nervous Control COMBINED FOUNDATION (page 1 of 2)

Key word	Definition	
Homeostasis	The regulation of internal conditions of a cell or organism	
Stimulus	An environmental change	
Negative feedback	Is how changes in the body get reversed back to the optimal conditions	
Receptor	A cell that detects stimuli	
Coordination centre	Receives and processes information (brain, spinal cord, pancreas)	
Central nervous system	The brain and spinal cord	
Neurone	A cell that transmits electrical impulses	
Effector	A gland or muscle that causes a response	
Response	Restores optimum conditions	
Synapse	A gap between two neurones	
Reflex	A fast, automatic nervous action that doesn't use the conscious part of the brain	

The Sense Organs		
Sense Organ	Receptors sensitive to	
ears	Sound and changes in position for balance	
eyes	Light	
skin	Touch, pressure, pain, temperature	
nose and tongue	Chemicals for smell and taste	

The Nervous System Voluntary Response Pathway Required Practical Reaction Time

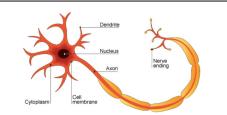
This system enables humans to react to their surroundings and coordinate their behaviour.

Information from receptors passes along cells (neurones) as electrical impulses to the central nervous system (CNS). The CNS coordinates the response of the effectors which may be muscles contracting or glands secreting hormones.

gggg		
	Pathway	Example
	stimulus	Lights switch on
	receptor	Cells in retina (eye)
	sensory neurone	Carries impulse to coordinator
	coordinator	Central nervous system (CNS) – brain or spinal cord
	motor neurone (very long)	Carries impulse to effector
	effector (muscle or gland)	Muscles connected to iris
_	response	Pupils get smaller

Homeostasis is the **regulation** of the **internal conditions** of a cell or organism to **maintain optimum conditions** for function, in response to internal and external changes. Homeostasis maintain:

- Blood glucose concentration
- Body temperature
- · Water concentration in blood


Homeostasis control systems involve:

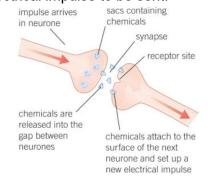
Receptor cells	Coordination centres	Effectors
These detect stimuli (changes in the environment)		Muscles or glands, which bring about a response to restore optimum levels

Neurone

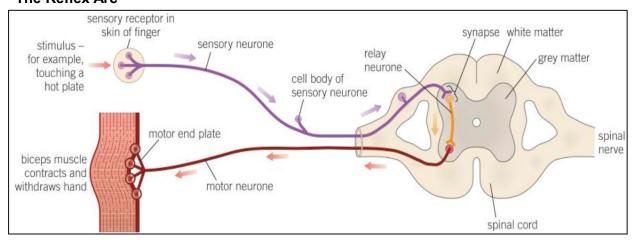
Neurones are specialised cells that carry electrical impulses. They have:

- A long axon so the impulse can be carried a long distance
- Dendrites / branches so that neurones can connect together

Reflexes


Reflex actions are **automatic** and **rapid**; they do not involve the conscious part of the brain and can **protect** humans from harm. They involve a **relay neurones**.

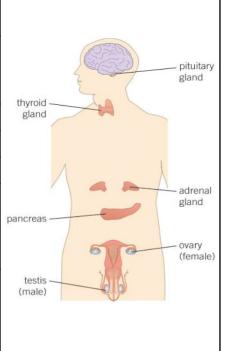
Reflex Arc Pathway


Pathway	Example	
stimulus	Touch hot plate	
receptor	Cells in finger	
sensory neurone	Long - carries impulse from receptor to relay neurone in spinal cord	
relay neurone	Allows impulses to travel between the sensory neurone and the motor neurone in the spinal cord	
motor neurone	Long carries impulse to effector	
effector	Biceps muscle contracts	
response	Withdraw hand	

Synapse

This is a gap where neurones meet. A chemical diffuses across the synapse and binds to a receptor on the next neurone. This causes an electrical impulse to be sent.

The Reflex Arc



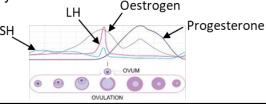
AQA B5 Homeostasis and Response: Hormonal Control COMBINED FOUNDATION (page 2 of 2)

The human **endocrine system** is made of glands, which release chemicals called **hormones** directly into the **bloodstream**. The blood carries the hormone to a **target organ** where it produces an effect. Examples of these controls include blood glucose concentration, body temperature and water levels.

Compared to the nervous system the effects are slower but act for longer.

Endocrine Gland	Role of its Hormones	
pituitary	The 'Master Gland'; secretes several hormones into the blood to stimulate other glands to release hormones	
thyroid	Controls metabolic rate	
pancreas	Controls glucose levels	
adrenal	Prepares body for stress	
ovaries	Makes the main female reproductive hormone oestrogen. Causes secondary sex characteristics to develop. Involved in menstrual cycle.	
testes	Makes the main male reproductive hormone testosterone. Causes secondary sex characteristics to develop and stimulates sperm production in testes.	

Menstrual cycle


Day 1-5: Menstruation. The uterus lining breaks down and leaves via the vagina.

Day 6-13: Uterus lining gets thicker. One egg cell in the ovary starts to mature.

Day 14: Ovulation. One egg cell is released from one ovary.

Day 15 - 30: If the egg cell is fertilised, it implants in the uterus lining.

If the egg cell is not fertilised, the uterus lining breaks down and the period begins.

Hormones controlling the menstrual cycle			
Hormone	Gland	Role of the Hormone	Interaction with other hormones
follicle stimulating hormone (FSH)	Pituitary gland	Matures an egg in the ovary.	Stimulates oestrogen
luteinising hormone (LH)	Pituitary gland	Stimulates release of an egg (ovulation)	
oestrogen	Oestrogen	Stimulates uterus lining to develop.	Stimulates LH Inhibits FSH
progesterone	Oestrogen	Maintains uterus lining.	Inhibits LH

Thyroxine

Produced in thyroid gland, increases basal metabolic rate. It is important for growth and development.

Thyroxine production is controlled by negative feedback.

Adrenaline

Produced in adrenal glands. Increases breathing/heart rate and blood flow to muscles. Prepares the body for 'fight or flight'.

Blood glucose concentration is monitored and controlled by the pancreas. It is controlled by negative feedback **Blood glucose** Pancreas produces the hormone insulin. too High This causes: glucose to move from the insulin blood into the cells glucose glycogen the liver and muscle cells to convert glucose in to glycogen for storage. **Blood glucose** Pancreas produces the hormone glucagon. too low This causes glycogen to be broken down into glucose. Type 1 diabetes Pancreas fails to produce enough insulin leading to uncontrolled blood glucose levels. Treatment: by insulin injection. Type 2 diabetes Body cells no longer respond to insulin. Obesity is a risk factor. **Treatment:**

Contraception

Fertility is the ability to have offspring. Fertility can be controlled by a variety of hormonal and non-hormonal methods of contraception

having a low sugar diet/low carbohydrate diet and increasing exercise.

Name	How it works	
oral contraceptive (pill)	Contains hormones to inhibit FSH so no eggs mature	
injection, implant, patch	Releases progesterone slowly to inhibit the maturation and release of eggs	
barrier methods - condoms/diaphragms	prevent sperm from reaching egg	
intrauterine devices	Prevent implantation of an embryo	
spermicidal agents	Kill or disable sperm	
abstinence	Avoiding sex when an egg may be in the oviduct	
surgery	Male or female sterilisation (surgery to stop you having offspring e.g. vasectomy in males)	

IVF (In Vitro Fertilisation)

Hormones are used in modern reproductive technologies to treat infertility

- FSH and LH are given to the woman as fertility drugs to help several eggs mature
- Eggs are collected from mother
- Eggs are fertilised by fathers sperm in a lab
- The fertilised eggs develop into embryos
- One or two embryos are inserted into the mothers uterus (womb)

Disadvantages of IVF: Emotional and physical stress, low success rates, multiple births risk to mother and babies