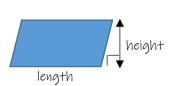
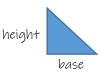
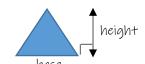

Y10 Maths Knowledge Organiser Higher Tier: Length, Area and Volume


What must I be able to do?	Key vocabulary	
New content: Calculate the length of an arc Mathswatch 167 (GCSE) Calculate the area and angle of a sector	Sector	A fraction of a circle, cut from the centre like a slice of pizza. The two straight sides will be the radius of the circle.
 ➤ Mathswatch 167 (GCSE) □ Calculate the Volume of a pyramid ➤ Mathswatch 170 (GCSE) 	Arc	A section of the circumference of a circle.
 □ Calculate the Volume and surface area of a cone ➤ Mathswatch 171 (GCSE) □ Calculate the Volume and surface area of a sphere ➤ Mathswatch 169 (GCSE) 	Frustum	The remaining shape when the top of a cone or pyramid is cut off at an angle parallel to it's base.

Area formulae

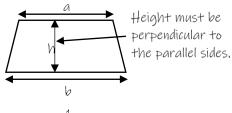

Rectangle/Square



Parallelogram

Triangles

 $Area = Length \times width$


Area = length x perpendicular height

Area = Base x perpendicular height ÷ 2

Perpendicular means at right angles to the base (not the sloping side!)

A triangle is half the area of a rectangle

Trapezium

$$Area = \frac{1}{2}(a+b)h$$

 $\frac{1}{2}$ (a + b) finds the average length of the parallel sides. This essentially turns the formula into the same as for the area of a parallelogram!

Circles

circumference

diameter

The area of a circle is equal to π multiplied by the radius squared :

$$A = \pi r^2$$

Note that just the r is squared, not π

Rearranging this gives us:

$$r = \sqrt{\frac{A}{\pi}}$$

The **circumference** of a circle is equal to π multiplied by the diamater:

$$C = \pi d$$

Converting units of area

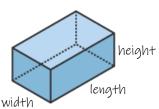
When converting units of area, you need to do the standard length conversion rule **twice**, once for each dimension.

$$1m^2 = 1m \times 1m = 100cm \times 100cm = 10,000cm^2$$

$$1cm^2 = 1cm \times 1cm = 10mm \times 10mm = 100mm^2$$

Therefore $1m^2 = 1,000,000mm^2$

Converting units of volume


Do the length conversion three times, once for each dimension.

$$1 \text{ m}^3 = 1 \text{ m x } 1 \text{ m x } 1 \text{ m} = 100 \text{ cm x } 100 \text{ cm x } 100 \text{ cm} = 1,000,000 \text{ cm}^3$$

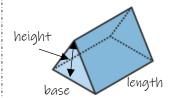
$$1 \text{ cm}^3 = 1 \text{ cm} \times 1 \text{ cm} \times 1 \text{ cm} = 10 \text{ mm} \times 10 \text{ mm} \times 10 \text{ mm} = 1,000 \text{ mm}^3$$

$$1000 \text{ cm}^3 = 1 \text{ litre}$$
 so $1 \text{ m}^3 = 1000 \text{ litres}$

<u>Cubes/cuboids</u>

Volume = length x width x height

Surface area:


Front + back: length x height x 2 (rectangles)

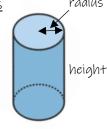
Side + side = width x height x 2 (rectangles)

Top + bottom = length x width x 2 (rectangles)

Total surface area is these 3 added together.

Triangular prisms

Volume = $\frac{\text{base x perpendicular height}}{2} \times \text{length}$


Surface area:

Area of the 2 triangles ($\frac{b \times h}{2}$ for each one)

Area of the three rectangles (note that they may all be different!)

Total surface area is all 5 faces added together.

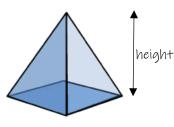
<u>Cylinders</u>

Volume = π x radius squared x height

 $=\pi r^2 h$

Surface area:

Top + bottom: Area of circle x 2

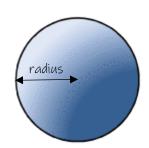

Curved surface area = area of rectangle

Total surface area is both added together.

 $S.A = 2\pi r^2 + 2\pi rh$

The curved surface area is the rectangular part of the net of a cylinder. It has a length equal to the circumference of the circle at the top of the cylinder and a height equal to that of the cylinder.

<u>Pyramids</u>

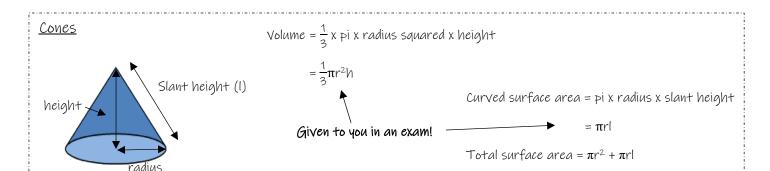


Volume = $\frac{1}{2}$ × area of base × perpendicular height

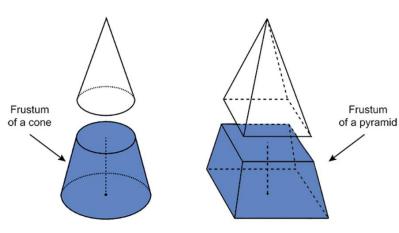
Surface area = area of base + area of all the triangles

Given to you in an exam!

Spheres

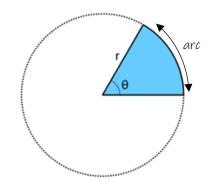


Volume = $\frac{4}{3} \times \pi \times \text{radius cubed}$


$$=\frac{4}{3}\pi r^3$$

Surface area = $4 \times \pi \times \text{radius squared}$

 $=4\pi r^{2}$


When removing the top section of a cone or pyramid the remaining shape is known as a frustum.

Key fact: the shape which is removed is a **similar** shape to the original one, i.e. it is a **scale factor enlargement of the original shape** (usually a fraction e.g. ½)

This means that the radius/side lengths of the original shape and the section removed will have the same ratio of lengths as the heights do

Volume of a frustum = volume of original shape - volume of shape removed

Arcs and sectors

Area of a sector = fraction of a full circle x area of a circle

$$= \frac{\theta}{360} \pi r^2$$

Arc length = fraction of a full circle x circumference

$$=\frac{\theta}{360}\pi d$$

Perimeter of a sector = arc length + radius + radius

$$= \frac{\theta}{360} \pi d + 2r$$

GLUE