Y10 Maths Knowledge Organiser Higher Tier: Frequency Distributions and Charts

What must I be able to do? New content: Understand different methods of sampling 		Key vocabulary	
		Population	The whole group of people or items being studied.
_	Mathswatch 152 and 176 (GCSE)	Sample Bias	A <u>selection</u> taken <u>from</u> the population.
 Draw and interpret a stem and leaf diagram Mathswatch 128b (GCSE) 		incorrect.	
	Draw and interpret frequency polygons Mathswatch 65b (GCSE)	Cumulative frequency	The <u>total</u> of a <u>trequency</u> and all frequencies <u>so far</u> in a distribution.
	 Draw and interpret cumulative frequency graphs and boxplots Mathswatch 186 and 187 (GCSE) Draw and interpret histograms Mathswatch 205 (GCSE) 	Quartiles	A quartile divides data into 4 quarters, the <u>lower quartile</u> (25%), median (50%) and <u>upper quartile</u> (75%).
		Frequency Density	Frequency density = <u>frequency ÷ class</u> width.

Sampling

Random samples are where each item in the population has an equal chance to be picked. The most common method is assigning each value in the population a number, then randomly picking numbers out of a hat or using a random number generator.

Stratified samples use sub-groups in the population sampled in the same proportion as in the population e.g. If a population of Y7s has 80 girls and 40 boys, the sample of 10% (12 students) will have twice as many girls as boys to retain the ratio of girls to boys, therefore 8 girls and 4 boys.

Sampling can be used to approximate the size of a population by doing a capture/recapture method:

e.g. There are an unknown number of birds in a colony. 30 birds are captured and have a tag fitted, then released. The following week a further 30 birds are captured and only 8 have a tag. Approximately how many birds are in the colony?

 $\frac{30}{n} = \frac{8}{30}$ Sample divided Tagged in 2nd sample by population (n) \div total tagged Tagged Tagged Therefore $n = 900 \div 8 = 112.5 = approximately 113$ birds.

Stem and Leaf diagrams

A stem and leaf diagram is used to represent an ordered set of data. It must contain a **key**. The stem goes vertically downwards and the leaves go horizontal.

e.g. Put the following data into a stem and leaf diagram.

4, 14, 17, 17, 24, 25, 26, 30, 31, 33, 34, 34, 35.

D	4	Veu	
1	4,7,7	FCY	
2	4, 5, 6	1 4	= 14
3	0, 1, 3, 4, 4, 5		

As the data in the table is in order it is easy to find the median and quartiles of the data.

D	4	Lower quartile = 17 (middle of 17 and 17 as it is the median of the first half of the data)
1	4, <mark>7, 7</mark>	
2	4, 5, <mark>6</mark> 4	—— Median = 26 (middle of all of the data)
3	0, 1, <mark>3, 4</mark> , 4, 5	
		ile . 22 C (widdle . 622 and 24 ac it is the wedien of the second helf . 6 the deta)
	Upper quart	110 = 33.5 (minale of 33 and 34 as it is the mealan of the second half of the data)

Frequency Polygons

A frequency polygon is a line graph which is joined using straight lines. Frequency is plotted on the vertical axis and if the data is **grouped**, plot the **midpoint** on the horizontal axis. The horizontal axis should be a linear scale, not grouped and the vertical axis should start from D.

Time	Frequency
D≤+<10	7
10≤+<20	9
20≤+<30	6
30≤+<40	3

<u>Histograms</u>

A histogram is similar to a bar chart, but where a bar chart is used for categorical or discrete data, we use a histogram for continuous data e.g. heights, weights, time etc.

Key features:

- There are no gaps between bars and bars may be different widths
- The horizontal scale is linear and not grouped
- The vertical axis is labelled frequency density
- The frequency is represented by the area of each bar rather than the height of each bar

e.g. Draw a histogram of the following data

Length of time	Frequency
0≤+<10	6D
0≤+<15	40
15≤+<20	75
20≤+<50	150

First we need to calculate the frequency density

$Frequency density = \frac{Frequency}{Class Width}$				
Length of time	Frequency	Frequency density		
0≤+<10	6D	$\mathcal{G}D\div1D=\mathcal{G}$		
10≤+<15	40	40÷5=8		
15≤+<20	75	75 ÷ 5 = 15		
20≤+<50	150	150 ÷ 30 = 5		
		T		

Class width is the difference between | the 2 bounds so this one is 50 - 20 = 30

The area of this bar is 150

Cumulative Frequency graphs

A cumulative frequency table shows a running total of the frequencies. A cumulative frequency diagram or graph, is drawn by **plotting** the **cumulative frequency** against the **upper boundary** of the class interval and then joined together.

Boxplots (or box and whisker diagrams)

A boxplot is used as a visual representation of the spread of data. It shows the smallest value, largest value, lower quartile, upper quartile and median. The actual box represents the spread of the middle 50% of the data which is known as the **interquartile range**. The first 25% of the data is the first whisker and the final 25% of the data is the second.

Interquartile range = upper quartile - lower quartile.

A box plot is drawn on top of a normal linear scale so that values can be read off and compared.

GLUE HERE