Y10 Maths Knowledge Organiser Higher Tier: Advanced Trigonometry

Labelling a non-rightanglea triangle	\wedge
Capital letters are used for the 3 angles	A A
Lower case letters for the 3 sides	
Letters of the same type are opposite each other	
	B C
	A
<u>Sine rule</u>	
Used when you know 3 out of these 4 things and need to	find the 4^{th} : 2 angles and the 2 sides opposite those angles.
Formula: $\frac{a}{b} = \frac{b}{b} = \frac{c}{b}$ or	$\frac{\sin A}{\sin A} = \frac{\sin B}{\sin A} = \frac{\sin C}{\sin A}$
sinA $sinB$ $sinC$	a f b c
Best used when wanting to find a missing side b	est usea when wanting to tina a missing angle
Cacine rule	
Used when you know 2 out of these 1 things and mont to	Find the 1th, 2 sides and one anale
Used when you know 3 out of these 4 things and want to	find the 4^{th} : 3 sides and one angle.
Used when you know 3 out of these 4 things and want to Formula: $a^2 = b^2 + c^2 - 2bc \cos A$ or	find the 4 th : 3 sides and one angle. $cosA = \frac{b^2 + c^2 - a^2}{2bc}$
Used when you know 3 out of these 4 things and want to Formula: $a^2 = b^2 + c^2 - 2bc \cos A$ or Used to find a missing side. Can be altered to allow you to find "b" or "c" instead.	find the 4 th : 3 sides and one angle. $cosA = \frac{b^2 + c^2 - a^2}{2bc}$ Used to find a missing angle. Can be altered to allow you to find "B" or "C" instead.
Used when you know 3 out of these 4 things and want to Formula: $a^2 = b^2 + c^2 - 2bc \cos A$ or Used to find a missing side. Can be altered to allow you to find "b" or "c" instead. Note: "2bc cosA" is 2 × b × c × cosA	find the 4 th : 3 sides and one angle. $cosA = \frac{b^2 + c^2 - a^2}{2bc}$ Used to find a missing angle. Can be altered to allow you to find "B" or "C" instead. Note: Don't forget to do cos ⁻¹ to find your actual angle at the end.
Used when you know 3 out of these 4 things and want to Formula: $a^2 = b^2 + c^2 - 2bc \cos A$ or Used to find a missing side. Can be altered to allow you to find "b" or "c" instead. Note: "2bc cosA" is 2 × b × c × cosA <u>Area of a triangle</u>	find the 4 th : 3 sides and one angle. $cosA = \frac{b^2 + c^2 - a^2}{2bc}$ Used to find a missing angle. Can be altered to allow you to find "B" or "C" instead. Note: Don't forget to do cos ⁻¹ to find your actual angle at the end.
Used when you know 3 out of these 4 things and want to Formula: $a^2 = b^2 + c^2 - 2bc \cos A$ or Used to find a missing side. Can be altered to allow you to find "b" or "c" instead. Note: "2bc cosA" is 2 × b × c × cosA <u>Area of a triangle</u> Used when you know 2 sides and the angle between.	find the 4 th : 3 sides and one angle. $cosA = \frac{b^2 + c^2 - a^2}{2bc}$ Used to find a missing angle. Can be altered to allow you to find "B" or "C" instead. Note: Don't forget to do cos ⁻¹ to find your actual angle at the end.
Used when you know 3 out of these 4 things and want to Formula: $a^2 = b^2 + c^2 - 2bc \cos A$ or Used to find a missing side. Can be altered to allow you to find "b" or "c" instead. Note: "2bc cosA" is 2 × b × c × cosA <u>Area of a triangle</u> Used when you know 2 sides and the angle between. Formula: Area of triangle = ½ ab sinC	find the 4 th : 3 sides and one angle. $cosA = \frac{b^2 + c^2 - a^2}{2bc}$ Used to find a missing angle. Can be altered to allow you to find "B" or "C" instead. Note: Don't forget to do cos ¹ to find your actual angle at the end.
Used when you know 3 out of these 4 things and want to Formula: $a^2 = b^2 + c^2 - 2bc \cos A$ or Used to find a missing side. Can be altered to allow you to find "b" or "c" instead. Note: "2bc cosA" is 2 × b × c × cosA <u>Area of a triangle</u> Used when you know 2 sides and the angle between. Formula: Area of triangle = ½ ab sinC Note: This means ½ × b × c × sinA	find the 4 th : 3 sides and one angle. $cosA = \frac{b^2 + c^2 - a^2}{2bc}$ Used to find a missing angle. Can be altered to allow you to find "B" or "C" instead. Note: Don't forget to do cos ¹ to find your actual angle at the end.
Used when you know 3 out of these 4 things and want to Formula: $a^2 = b^2 + c^2 - 2bc \cos A$ or Used to find a missing side. Can be altered to allow you to find "b" or "c" instead. Note: "2bc cosA" is 2 x b x c x cosA <u>Area of a triangle</u> Used when you know 2 sides and the angle between. Formula: Area of triangle = ½ ab sinC Note: This means ½ x b x c x sinA	find the 4 th : 3 sides and one angle. $cosA = \frac{b^2 + c^2 - a^2}{2bc}$ Used to find a missing angle. Can be altered to allow you to find "B" or "C" instead. Note: Don't forget to do cos ⁻¹ to find your actual angle at the end.

GLUE HERE