Y10 Maths Knowledge Organiser Higher Tier: Quadratics Equations

What must I be able to do?	Key vocabulary	
New content: Solve a quadratic equation by factorising Sparx U228, U960	Root	The values of x in a quadratic equation which give a value of y = 0. On a araph, this is where it
 Solve a quadratic equation by using the quadratic formula Spary UCCE 		<u>crosses the x-axis</u> .
 Spark (1909) Solve a quadratic equation by completing the square Spark (1589) 	Turning point	On a quadratic graph, the turning point is the <u>maximum or minimum</u> point
\Box Identify the significant points of a quadratic function	Discriminant	on the curve. The part of the formula <u>under the square root</u> (b ² – 4ac). It determines how many solutions a quadratic equation will have.
 Sparx U769, U667 Solve a pair of simultaneous equations where one is non linear using an algebraic method Sparx U547 Solve auadratic inequalities 		
 Sparx U133 		

<u>Solving by factorising</u>

Step 1: Rearrange the equation so that one side is equal to 0 Step 2: Factorise the equation Step 3: Solve each factor equal to 0. e.g. Solve $x^2 - 6x + 10 = 2$ $x^2 - 6x + 8 = 0$ (x - 4)(x - 2) = 0Either x - 4 = 0 or x - 2 = 0 x = 4 and x = 2 x = 4 and x = 2Either x = 4 and x = 2 x = 4 and x = 2x = 4 and x = 3

The quadratic formula

For a general quadratic equation written $ax^2 + bx + c = 0$

The $b^2 - 4ac$ is known as the **discriminant**.

If $b^2 - 4ac > 0$ then there are 2 unique roots. The graph crosses the x-axis in 2 places.

If $b^2 - 4ac = 0$ then there is a repeated root. The graph touches the x-axis in one spot.

If $b^2 - 4ac < 0$ there are no roots. The graph does not touch the xaxis.

<u>Completing the square</u>

Writing a quadratic equation in the form $(x + p)^2 + r = 0$ is known as completing the square.

e.g. Solve $x^2 + 6x - 8 = 0$ (Half the b value, so $6 \div 2 = 3$) $(x + 3)^2 - 9 - 8 = 0$ (subtract this value squared as $(x + 3)^2$ multiplied out is $x^2 + 6x + 9$, not $x^2 + 6x$) $(x + 3)^2 - 17 = 0$ (this is the completed the square form) $(x + 3)^2 = 17$ $x + 3 = \pm\sqrt{17}$ $x = -3 \pm\sqrt{17}$

When written in the form $(X + p)^2 + r = 0$, you can determine key features of the graph.

The equation of the line of symmetry of the curve is x = -p

The co-ordinate of the turning point of the curve (minimum/maximum point) is (-p, r)

Solving quadratic inequalities

Solving a quadratic inequality is very similar to solving a quadratic equation.

Step 1: Solve the equation to find the critical values.

Step 2: Sketch the curve

Step 3: Write down the appropriate inequality/inequalities

e.g. Solve $x^2 + 10x - 24 < 0$

Start by solving:

 $x^2 + 2x - 24 = 0$

(x + G)(x - 4) = 0

x = -6 and x = 4 (these are the critical values)

The curve is a positive quadratic so is a 'u' shaped parabola.

The roots of the equation are at x = -6 and x = 4, so this is where it crosses the x axis.

The curve is < 0 (below the x-axis) when it is between x = -6 and x = 4.

Therefore the solution to $x^2 + 10x - 24 < 0$ is:

-6<X<4

Note: if the question instead was solve $x^2 + 10x - 24 > 0$ we now need the sections above the x-axis which are not connected and so the solution would have been

x < -6 and x > 4

Simultaneous equations where one is non-linear

As a non-linear graph will curve, the solution to simultaneous equations with a non-linear equation can have more than 1 answer.

_....

If we are solving a quadratic and a linear graph there are either:

O solutions - the graphs do not intersect

1 solution - the linear graph is a tangent to the curve and touches only once

2 solutions - the graph crosses twice (as shown on the left)

Solving the equations algebraically allows us to find the exact values of these intersections.

e.g. Solve

 $y = x^2 + 3x - 8$ y = 2x + 3

As both equations are y =, we can equate them

 $x^2 + 3x - 8 = 2x + 3$

Rearrange so that one side = D

 $x^2 + x - 11 = 0$

This does not factorise so using the formula

$$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-11)}}{2 \times 1}$$

x = 2.8541... and x = -3.854...

Substitute these back into y = 2x + 3

So the solutions are:

$$x = 2.86$$
 and $y = 8.71$

e.g. Solve $x^2 + y^2 = 10$ y = 2x - 5

This time we need to substitute y = 2x - 5 into the top equation.

$$x^2 + (2x - 5)^2 = 10$$

Multiply out the bracket

$$x^2 + 4x^2 - 20x + 25 = 10$$

Simplify and set one side = 0

$$5x^2 - 20x + 15 = 0$$

Factorise and solve

$$5(x^2 - 4x + 3) = 0$$

 $5(x - 3)(x - 1) = 0$
 $x = 3 \text{ and } x = 1$
Substitute back into $y = 2x - 5$
When $x = 3$, $y = 1$
when $x = 1$, $y = -3$

Solutions need to be given in pairs with the correct x and y values matched up.

GLUE HERE