What must I be able to do?	Key vocabulary	
You may need to revise the following: Year 7 Topic 12: Constructions and Classifying 2D Shapes Year 8 Topic 11: Symmetry and Tesselation	Vector	A quantity which has magnitude (how long it is) and direction.
New content: Represent, add and subtract vectors On a coordinate grid, - translate shapes using vectors - reflect shapes - rotate shapes	Transformation	The movement or manipulation of an object. The four transformations we use are rotation, reflection, translation and enlargement.
- enlarge shapes (including fractional scale factors) > Sparx M139, m290, m910, m178, m881	Object	The starting shape.
\square Describe a single transformation to map one shape to a second	Image	The transformed shape.

Vectors

Vectors are often written as column vectors

Up or down

Positive values are right and up. Negative values are left and down.
This is 3 right and 4 down.

This is the vector $\binom{4}{1}$

It goes 4 units right and 1 unit up.

Add/subtract vectors:

$$
\binom{5}{4}-\binom{3}{6}=\binom{5}{2}
$$

Multiply vectors by a constant

$$
3\binom{4}{7}=\binom{12}{21}
$$

Transformations

Enlargement: e.g. Enlarge the shaded shape by scale factor of 2 , centre C.
counting from C to the first vertex, it was 2 squares right and 1 square up, so the image will be double that (s.f. of 2) so 4 right and 2 up from the centre, C.

Reflection: e.g. reflect shape B in the line $y=3$

Draw on the line of reflection.

Reflect each point to the other side of the line of reflection.

Each point on the image is the same distance from the line of reflection as they are on the object.

Rotation: e.g. rotate shape A 90° clockwise about $(5,3)$

Draw the object onto tracing and paper and put the pencil on the centre of rotation $(5,3)$
Then rotate the tracing paper as instructed and draw the image in its new position.

Translation: e.g. translate triangle A by the vector $\binom{5}{-3}$

A translation is a movement, so in this instance it moves 5 squares right and 3 squares down.

Rotation, reflection and translation all leave a congruent (identical) shape to the object.

