What must I be able to do?	Key vocabulary	
You may need to revise the following: - Year 8 Topic 5: Solving Equations 2 - Year 7 Topic 10: Solving Equations 1 Recap content: Solve linear equations where the unknown appears on only one side Solve equations where the unknown appears in the numerator of a fraction Solve equations which involve brackets Solve equations where the unknown appears on both sides sparx M707, M509, M554, m387,m957	Linear equation	An equation where the highest power is only 1, e.g. does not contain an x^{2} or higher power.

Solving equations which require more steps

e.g. $\quad \frac{2 x+6}{3}=7$

The unknown (x) is on one side of the equals sign only. There is a fraction, a constant term and a coefficient all on the left hand side which need to be dealt with.

- Step 1: Remove the fraction by multiplying all terms by the denominator
- Step 2: Do the inverse of the constant
- Step 3: Do the inverse of the coefficient

So...

$$
\left.\begin{array}{rl}
\frac{2 x+6}{3} & =7 \\
2 x+6 & =21 \\
2 x & =15 \\
x & =\frac{15}{2}
\end{array}\right) \div 2
$$

e.g.

$$
4 n-9=6+n
$$

The unknown (n) is on both sides of the equals sign. There is also a constant term on both sides and a coefficient of 4 on the left hand side.

- Step 1: Do the inverse of the smallest amount of n
- Step 2: Do the inverse of the constant
- Step 3: Do the inverse of the coefficient

So...

$$
3(2-w)=5(1-w)
$$

The unknown (w) is on both sides of the equals sign. There are brackets on both sides, coefficients on both sides and both w are negative.

- Step 1: Multiply out the brackets
- Step 2: Do the inverse of the smallest amount of w
- Step 3: Do the inverse of the constant
- Step 4: Do the inverse of the coefficient

So...

$-5 w$ is smaller than $-3 w$ so we do the inverse of $-5 w$ not the inverse of $-3 w$
e.g.

$$
3 x-8=\frac{5 x}{2}+4
$$

The unknown (x) is on both sides of the equals sign. There is also a constant term on each side and a fraction to undo.

- Step 1: Remove the fraction by multiplying all terms by the denominator.
- Step 2: Do the inverse of the smallest amount of x
- Step 3: Do the inverse of the constant

So...

