Ya Maths Knowledge Organiser Topic 1: Indices and Standard Form

What must I be able to do?	Key vocabulary	
You may need to revise the following: - Year 8 Topic 1: Types of number and indices - Year 7 Topic 1: Types of number New content: Write a number as a power of another number Use index laws for multiplication, division and raising a power to a power Write a number in standard form Calculate with numbers in standard form	Standard Form	Standard form is a way of writing down very large or very small numbers easily. It involves writing a number as a decimal between 1 and 10 with the decimal point after the first digit, multiplied by a power of 10 .

Index Laws

- Any number to the power of 1 is just that number.
e.g. $5^{1}=5$ and $a^{1}=a$
- Any number other than 0 , when raised to the power of 0 will equal 1 .
e.g. $5^{\circ}=1$ and $a^{0}=1$
- When multiplying two numbers with the same base, it can be simplified by adding the powers.

```
e.g. 53}\times\mp@subsup{5}{}{7}=\mp@subsup{5}{}{10}\mathrm{ and }\mp@subsup{a}{}{6}\times\mp@subsup{a}{}{9}=\mp@subsup{a}{}{15
\(a\) is the base
```

- When dividing two numbers with the same base, it can be simplified by subtracting the powers. e. $9 \cdot 5^{7} \div 5^{3}=5^{4}$ and $a^{12} \div a^{5}=a^{7}$
- When raising a power to another power, it can be simplified by multiplying the two powers together. e.g. $\left(5^{3}\right)^{2}=5^{6}$ and $\left(a^{4}\right)^{5}=a^{20}$

With these final 3 rules, if there are any coefficients in front of the terms, you treat them as you would any normal number.
e.g.

$\left(2 a^{2}\right)^{3}=8 a^{6}$
$2 \times 2 \times 2$ or 2^{3}

Standard Form

e.g. Write $876,000,000$ in standard form.
$876,000,000=8.76 \times 10^{8}$ (10^{8} as the digits have moved 8 places to the right)
e.g. Write 0.000043 in standard form
$0.000043=4.3 \times 10^{-5}\left(10^{-5}\right.$ as the digits have moved 5 places to the left $)$
e.g. Calculate $\left(3.2 \times 10^{4}\right) \times\left(4 \times 10^{3}\right)$. Give your answer in standard form.

First, work with the decimals.
Second, the powers of 10 .

$$
3.2 \times 4=12.8
$$

which gives 12.8×10^{7}. This is not standard form as 12.8 is more than 10 .
So in standard form it is $1.28 \times 10 \times 10^{7}$ which gives us 1.28×10^{8}

