y9 maths Knowledge Organiser Topic 10: Rates of change

What must I be able to do?	Key vocabulary	
You may need to revise the following: - Year 7 Topic 9: Working with units New content: Use the relationship between distance, time and speed \rightarrow Sparx U151 Write speed in different units such as $\mathrm{km} / \mathrm{h}, \mathrm{m} / \mathrm{min}, \mathrm{m} / \mathrm{s}$ and cm / s Convert from one unit of speed to another ($0.9 . \mathrm{km} / \mathrm{h}$ to m / s) Solve word problems involving speed, uniform speed and average speed Use the relationship between density, mass and volume to solve problems Sparx 4910	Speed	A measurement of how fast something is travelling. It involves two other measures, distance and time.
	Density	A measurement of how heavy an object is for a given amount. If an object is heavy and small it will have a higher density.
	Uniform	A value which does not change.

Speed

Speed $=$ distance \div time
Speed is usually measured in:
Kilometres per hour km / h
miles perhour mph
Metres per second m / s

The formula can also be rearranged to give:
Time $=$ distance \div speed
Distance $=$ speed x time

Questions involving speed will often talk about 'average speed'. Objects rarely travel at a constant speed and instead speed up and slow down during the journey. To get around this we often use the average speed of the journey instead.

Average speed $=$ total distance \div total time

Density

Density is mass \div volume
Density is usually measured in:
Kilograms per metre cubed $\quad \mathrm{km} / \mathrm{m}^{3}$
Grams per centimetre cubed $\quad \mathrm{g}_{\mathrm{cm}}{ }^{3}$

The formula can also be rearranged to give:
Volume $=$ mass \div density
Mass $=$ density \times volume

Converting units of speed

This is usually best done in stages.
e.g. Convert $60 \mathrm{~km} / \mathrm{h}$ into m / s

1000 m in $\mathrm{akm} \quad 60 \mathrm{~km} / \mathrm{h}=60,000 \mathrm{~m} / \mathrm{h} \quad(x$ 1000 $)$
60 minutes in an hour $\quad 60,000 \mathrm{~m} / \mathrm{h}=1000 \mathrm{~m} / \mathrm{min} \quad(\div 60)$
60 seconds in an hour $1000 \mathrm{~m} / \mathrm{min}=16.67 \mathrm{~m} / \mathrm{s}(2$ d.p. $) \quad(\div 60)$

Problem solving with speed

On the first part of the journey a car travels 160 km in 3 hours. On the second part of the journey the car travels at $70 \mathrm{~km} / \mathrm{h}$ for 2 hours. What is the average speed of the journey?

During the second part of the journey the car travels:

$$
\text { Distance }=\text { speed } x \text { time }=70 \times 2=140 \mathrm{~km} \text {. }
$$

So total distance $=140+160=300 \mathrm{~km}$.
And total time $=3+2=5$ hours.
Average speed $=$ total distance \div total time $=300 \div 5=60 \mathrm{~km} / \mathrm{h}$.

Problem solving with density

Material A has a density of $5.8 \mathrm{~g} / \mathrm{cm}^{3}$.
Material B has a density of $4.1 \mathrm{~g} / \mathrm{cm}^{3}$.
377 g of Material A and 1.64 kg of Material B form Material C.
Work out the density of Material C. \quad Density is in grams
Volume of Material $A=377 \div 5.8=65 \mathrm{~cm}^{3}$ per cm^{3} so all mass needs to be in grams $1.64 \mathrm{~kg}=1640 \mathrm{~g}$
Total volume of material $C=65+400=465 \mathrm{~cm}^{3}$
Total mass of material $\mathrm{C}=377+1640=2017 \mathrm{~g}$
Density of Material $\mathrm{C}=2017 \div 465=4.34 \mathrm{~g} / \mathrm{cm}^{3} \quad(2$ d.p. $)$

