What must I be able to do?	Key vocabulary	
New content: Recognise and continue sequences Sparx M381 Recognise and represent number patterns Sparx M241 Find an algebraic expression for the $n^{\text {th }}$ term Sparx M991, M166 Establish whether a number is a term in the sequence	Sequence	A pattern of numbers which fit a certain rule.
	Term	A number in a sequence.
	Position	where a term is in a sequence.
	Term to Term rule	The rule for how to get from one number to the next number in the sequence.
	position to term rule	The rule for how to work out a number in a sequence if you know its position.

Writing a sequence

e.g. The first term of a sequence is 2 and the term to term rule is add 8 . What are the first 5 terms in the sequence?

Using position to term rules

These are often described using the nth term rule. This is just a rule with a letter n in it. The n is replaced by the position of the number in the sequence.
e.g. The $n+h$ term rule of a sequence is $3 n+4$. What are the first 4 numbers in the sequence?

For the first term, $n=1$ as it is position 1 in the sequence. For the second term $n=2$, the third term $n=3$ and the $4^{\text {th }} \operatorname{term} n=4$.

$$
\begin{array}{ll}
n=1 & 3 \times 1+4=7 \\
n=2 & 3 \times 2+4=10 \\
n=3 & 3 \times 3+4=13 \\
n=4 & 3 \times 4+4=16
\end{array}
$$

Remember $3 n$
means $n \times 3$, so if n
$=1$ that is 3×1

The first 4 terms are $7,10,13$ and 16 .
If we wanted the $100^{\text {th }}$ term we would use $n=100$ and so on for any other position in the sequence.

Finding if a number is in a sequence

e.g. is 311 a term in the sequence $4 n+5$

To decide with questions like this, first set it up as an equation and then solve. If n is an integer at the end it is in the sequence and that is its position:

No, 311 is not in the sequence as it is between the $76^{\text {th }}$ and $77^{\text {th }}$ term.

Finding position to term rules

e.g. Find the nth term rule of the sequence $5,8,11,14 \ldots$.

The sequence goes up by 3 each time so must be related to the 3 times table. The nth term of the $3 x$ table is $3 n$.

Sequence
$3 x+$ able

To go from the 3 times table to the sequence we always add 2 . So the $n+h$ term is $3 n+2$

Pattern Sequences

Often patterns of shapes can be simplified to a number sequence.
e.g.

Each extra term adds 2 squares to the top and 3 squares to the bottom. In total it goes up by 5 squares each time.

The sequence in this case is the number of squares in each shape so is the sequence $5,10,15 \ldots .$.

The nth term of this sequence would be $5 n$.

