What must T be able to do?	Key vocabulary		
You may need to revise the following:	HCF Highest common factor. The largest number which is a		
• Year 7 Topic 1: Types of number		factor of all the numbers in the question.	
New content:	LCM	Lowest common multiple. The <u>smallest</u> number which is	
□ Find the prime factors of a number and	Proison a	a <u>multiple</u> of <u>all the numbers</u> in the question.	
Sparx W108	factors	<u>Factors</u> of an integer which are <u>prime numbers</u>	
 Determine HCF and LCM by prime 	Product of	All the <u>prime factors</u> of an integer which when	
factorisation	prime	multiplied together make the original integer.	
Sparx M698, M227, M365	factors		
Find squares, square roots, cubes and cube reats using prime factoric sting.	venn diaaram	An IIIUSTRATION WHICH USES <u>CIFCLES</u> to <u>SNOW</u> WHAT IS IN common between 2 or more things	
I use indices to record repeated multiplication	010091 0111		
Express as a product of prime factors	HCF and LCM using prime factorisation		
Use a factor tree to find all the prime factors. Then write the prime factors as a multiplication.	The first step is to write each number as a product of prime factors, then put the factors into a Venn diagram.		
e.g Write 60 as a product of prime factors	e.g. Find the HCF and LCM of 60 and 24.		
60 10 x 6 = 60	We already know that $60 = 2 \times 2 \times 3 \times 5$ and $24 = 2 \times 2 \times 2 \times 3$		
	They both have 2 x 2 x 3 so these		
10 Gircle each		prime factors go into the intersection	
as they appear			
	60 also has a prime factor of 5 so this goes on its own as does the "extra" prime factor of 2 for 24.		
(2)(5)(2)(3)			
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$			
So the prime factors of 60 are 2 3 and 5			
The product of prime factors for GD is all of the \int			
circlea numbers multipliea together which is:			
If you actually work this out it should equal GO	The Iliala	The Highest Common Factor ($\mu(F)$ is found by multiplying all the	
e.a. Write 2.4 as a product of prime factors	numbers in the intersection of the 2 circles.		
24	So the HO	So the HCF of GO and 24 is $2 \times 2 \times 3 = 12$	
12 $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$	The Lowest Common Multiple (LCM) is found by multiplying all the		
	numbers in the 2 circles, including the intersection.		
	So the LC	So the LCM of GO and 24 is $5 \times 2 \times 2 \times 3 \times 2 = 120$	
$\begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	Prime factors of square and cube numbers		
	When writ	When written as a product of prime factors, all the prime factors	
	of a square number can be written with even powers.		
So as a product of prime factors 24 is	e.a. 36=	$2^{2} \times 3^{2}$ $81 = 3^{4}$ $144 = 2^{4} \times 3^{2}$	
= 2 x 2 x 2 x 3	To square	To square root these, you just divide the powers by 2.	
$= 2^{3} \times 3$	Cube numbers have powers which are multiples of 3		
\ Tudices notation for receated multiplication	e.a 125=	$= 5^3$ 216 = 2 ³ x 3 ³ 512 = 2 ⁹	
	, , , , , , , , , , , , , , , , , , , ,		

To cube root these you divide the powers by 3.