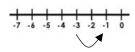

Y7 Maths Knowledge organiser Topic 6: Negative numbers

What must I be able to do?		Key vocabulary		
	Represent and order positive and negative integers on a number line Sparx M527	Positive	Any number that is <u>greater than zero</u> is a positive number.	
	Show addition and subtraction on a number line Apply the four basic operations on positive and negative integers	Negative	Any number that is <u>less than zero</u> is a negative number.	
	Sparx M106, M288 Calculate with rational and other decimal numbers (including negative numbers)	Rational	Any number that can be <u>written</u> as a <u>fraction</u> with integers as the top and bottom numbers of the fraction is a rational number.	

Representing Negatives

Multiplying/dividing two numbers which involve negatives

If one of the numbers is negative, the answer is also negative. If both of the numbers are negative, the answer is positive.


e.g.
$$3 \times -4 = -12$$
 $3 \times 4 = 12$

This rule works for both multiplying and dividing but **not** for addition and subtraction

-3 x 4 = -12 -3 x -4 = 12

Addition and subtraction with negatives

The first number is your starting point. It does not determine whether you end up with a positive or negative value. E.g. -3 + 2 starts at -3 then goes up (to the right) 2 places to end at -1

Things to be careful of:

Adding a negative has the same effect as subtraction so

-8 + - 3 is the same as -8 - 3 = -11
start at -8
$$\checkmark$$
 Move left 3 places

Subtracting a negative number has the same effect as addition

so
$$-8 - 3 = -8 + 3 = -5$$

start at -8 move right 3 places

Using negative number tables/double sided counters

It can be easier to represent addition/subtractions using a table of positive & negative numbers. The key idea to remember is that +1 and -1 make a zero sum, so they add together to make D. You can add or cancel these when needed.

e.g.
$$-3+2$$

Start with negative 3

Stall I WITH Hodgettive 5						
Positive						
Negative	(-)	(-)	(-)			

Now add two positives in (+2)

110W add 1 WO POSITIVOS W (+ Z)						
Positive	\oplus	\oplus				
Negative	(-)	(-)	(-)			

The zero pairs cancel to give -1

THE ECTO FULL 3 CONTECT TO GIVE T						
Positive	\mathfrak{D}	Ø				
Negative	\mathcal{J}	\mathscr{D}	<u> </u>			

Start with negative 3

a real restrictions					
Positive					
Negative			(-)		

We need to take away 5 negatives but there are only 3. Add in 2 zero pair sums to take the total up to 5 negatives.

Positive				\oplus	\oplus
Negative	(-)	(-)	(-)	(-)	(-)

Take away 5 negatives to give +2 as a final answer.

	,)		·)		
Positive				\oplus	\oplus
Negative	\mathcal{L}	\mathcal{L}	\mathscr{T}	\mathcal{Z}	\mathcal{F}