Y10 Maths Knowledge Organiser Foundation Tier: Right Angled Triangles

Pythagoras' Theorem

Pythagoras' theorem states that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

$$
n^{2}=a^{2}+b^{2}
$$

so therefore by rearranging we also get:
$a^{2}=h^{2}-b^{2}$ and
$b^{2}=h^{2}-a^{2}$

Pythagorean Triples

These are sets of 3 integer values which form a right angled triangle

4
Any integer scale factor enlargement of a Pythagorean triple also gives another triple
e.g. 3, 4, 5 can become $6,8,10$ (s.f. 2) or $9,12,15$ (s.f. 3)

The next 6 primitive (non enlarged) Pythagorean triples are:
$5,12,13$
$9,40,41$
$7,24,25$
$11,60,61$
$8,15,17$
$12,35,37$

Example of Pythagoras

To find x we need to use Pythagoras's theorem as we know 2 sides and want to find the third.

In this question x is the hypotenuse as it is opposite the right angle in the triangle.

So our formula $h^{2}=a^{2}+b^{2}$ becomes

$$
x^{2}=7^{2}+9^{2}
$$

Note that it does not matter which is a and which is bout of the 7 and 9 .

$$
\begin{aligned}
& x^{2}=49+81 \\
& x^{2}=130 \\
& x=\sqrt{130} \\
& x=11.40175425 \\
& x=11.4 \text { (rounded to } 1 \text { decimal place) }
\end{aligned}
$$

Trigonometric Ratios

For any right angled triangle, if we identify one angle we can label the 3 sides as shown

Opposite (O)
Opposite the marked angle

The ratio of each pair of the 3 sides, is always the same answer for a given size of the angle θ, regardless of the actual lengths of the sides.

This leads to the following definitions:

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

Sin is short for sine, cos for cosine and tan for tangent.

One way to remember these is the mnemonic SOHCAHTOA which gives each of the 3 ratios by their first letter.

We can also represent these ratios using formula triangles. In each case the letter in the middle goes at the top of the triangle

SOH

$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$

TOA
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$

Start by labelling the two sides in the question

The ratio with O and H in is sine

$$
\begin{gathered}
\sin 40=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{x}{10} \\
10 \times \sin 40=x \\
x=6.43(\text { 2.d.p) }
\end{gathered}
$$

using trigonometry to find a missing angle

Start by labelling the
two sides in the question

The ratio with A and H in is cosine

$$
\begin{gathered}
\cos x=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{4}{9} \\
x=\cos ^{-1}\left(\frac{4}{9}\right) \\
x=63.6^{\circ}
\end{gathered}
$$

The inverse of each trig function is written as $\sin ^{-1} x \cos ^{-1} x$ and $\tan ^{-1} x$ Use these when finding an angle

On a non-calculator paper you can be asked to complete a trigonometry question if the angle is 0,30,45,60 or 90 . Therefore you need to learn the following standard values for these angles.

GLUE HERE

