Y10 Maths Knowledge Organiser Foundation Tier: Right Angled Triangles

What must I be able to do?			Key vocabulary	
 New content: Use Pythagoras' theorem to find a missing side in a right angled triangle Sparx U385 Use Pythagoras' theorem to solve problems 			Hypotenuse	The <u>longest</u> side of a right angled triangle. It is the side <u>opposite</u> the <u>right</u> <u>angle.</u>
 Sparx U541 Use the three trigonometric ratios to find a missing side Sparx U283 			Angle of elevation	The <u>angle</u> made with the ground by <u>looking</u> <u>up</u> at something.
 Use the trig ratios to a Sparx U545 	calculate an angle			
 Solve practical problems using trigonometry, including bearings and angles of elevation and depression Sparx U967, U164 			Angle of depression	The <u>angle</u> made with the ground by <u>looking</u> <u>down</u> at something
□ Know certain Values for ➤ Sparx U627	· exact trig functions			e.g. from the top of a cliff or tower.
Pythagoras' Theorem Example o		Example of P	<u>'ythagoras</u>	
Pythagoras' theorem states the square of the hypotenus squares of the other two sides	hat in a right angled triangle, a is equal to the sum of the $h^2 = a^2 + b^2$ so therefore by rearranging we also get: $a^2 = h^2 - b^2$ and	7	x q	
b	$a_{1}^{2} - a_{2}^{2} = a_{1}^{2}$			

Pythagorean Triples

...

These are sets of 3 integer values which form a right angled triangle

The most common Pythagorean triple is the **3, 4, 5** triangle

Any integer scale factor enlargement of a Pythagorean triple also gives another triple

e.g. 3, 4, 5 can become 6, 8, 10 (s.f. 2) or 9, 12, 15 (s.f. 3)

The next 6 primitive (non enlarged) Pythagorean triples are:

5, 12, 13	9, 40, 41
7, 24, 25	11, 60, 61
8, 15, 17	12, 35, 37

To find x we need to use Pythagoras's theorem as we know 2 sides and want to find the third.

In this question x is the hypotenuse as it is opposite the right angle in the triangle.

So our formula $h^2 = a^2 + b^2$ becomes

$$x^2 = 7^2 + 9^2$$

Note that it does not matter which is a and which is b out of the 7 and 9.

 $x^2 = 49 + 81$ $x^2 = 130$ $x = \sqrt{130}$ x = 11.40175425

x = 11.4 (rounded to 1 decimal place)

Opposite the marked angle

Adjacent (A)

Next to the marked angle

The ratio of each pair of the 3 sides, is always the same answer for a given size of the angle θ , regardless of the actual lengths of the sides.

This leads to the following definitions:

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$
$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$
$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

Sin is short for sine, cos for cosine and tan for tangent.

One way to remember these is the mnemonic **SOHCAHTOA** which gives each of the 3 ratios by their first letter.

We can also represent these ratios using formula triangles. In each case the letter in the middle goes at the top of the triangle

Exact trig values for 0, 30, 45, 60 and 90°

On a **non-calculator** paper you can be asked to complete a trigonometry question if the angle is 0, 30, 45, 60 or 90° . Therefore you need to learn the following standard values for these angles.

To find **sine** of one of these 5 angles, identify the correct finger on your left hand. Square root the number of fingers held up to the **left** of that finger and then divide by 2 to get an exact value for the sine of that angle.

The **cosine** is the square root of the number of fingers to the **right** of that finger and then divide by 2.

The **tangent** is the square root of the fraction of the number of fingers to the left (sine), divided by the number of fingers to the right (cosine).

	D	30	45	6 D	90
ร่าท	$\frac{\sqrt{D}}{2} = 0$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2} = \frac{2}{2} = 1$
C05	$\frac{\sqrt{4}}{2} = \frac{2}{2} = 1$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{D}}{2} = 0$
tan	$\sqrt{\frac{D}{4}} = D$	$\sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$	$\sqrt{\frac{2}{2}} = \frac{\sqrt{2}}{\sqrt{2}} = 1$	$\sqrt{\frac{3}{1}} = \frac{\sqrt{3}}{\sqrt{1}} = \sqrt{3}$	Does not exist

GLUE HERE