What must I be able to do?	Key vocabulary	
New content:	Rates of Pay	An amount of money paid in a given
\square Be able to solve problems involving compound measures such		time, e.g. per week or per year
as speed, density, rates of pay and pressure. \rightarrow Sparx U151 (speed)	Pressure	The force per unit of area.
		he pressure exerted by a solid
> Sparx 4527 (pressure)		the weight of the object divided by
		the area of the object's surface

Speed

Speed $=$ distance \div time
Speed is usually measured in:
Kilometres per hour km / h
milesperhour mph
Metres per second m / s

The formula can also be rearranged to give:
Time $=$ distance \div speed
Distance $=$ speed x time

Questions involving speed will often talk about 'average speed'. Objects rarely travel at a constant speed and instead speed up and slow down during the journey. To get around this we often use the average speed of the journey instead.

Average speed $=$ total distance \div total time

Density

Density is mass : volume
Density is usually measured in:
Kilograms per metre cubed
$\mathrm{kg} / \mathrm{m}^{3}$
Grams per centimetre cubed $\quad \mathrm{g} / \mathrm{cm}^{3}$

The formula can also be rearranged to give:
Volume $=$ mass \div density
Mass $=$ densit \times volume

Converting units of speed

This is usually best done in stages.
e.g. Convert $60 \mathrm{~km} / \mathrm{h}$ into m / s

1000 m in a km $\quad 60 \mathrm{~km} / \mathrm{h}=60,000 \mathrm{~m} / \mathrm{h}$
($\times 1000$)
60 minutes in an hour
$60,000 \mathrm{~m} / \mathrm{h}=1000 \mathrm{~m} / \mathrm{min}$
60 seconds in an hour $1000 \mathrm{~m} / \mathrm{min}=16.67 \mathrm{~m} / \mathrm{s}(2$ d.p. $) \quad(\div 60)$

Problem solving with speed

On the first part of the journey a car travels 160 km in 3 hours. On the second part of the journey the car travels at $70 \mathrm{~km} / \mathrm{h}$ for 2 hours. What is the average speed of the journey?

During the second part of the journey the car travels:

$$
\text { Distance }=\text { speed } x \text { time }=70 \times 2=140 \mathrm{~km} \text {. }
$$

So total distance $=140+160=300 \mathrm{~km}$.
And total time $=3+2=5$ hours.
Average speed $=$ total distance \div total time $=300 \div 5=60 \mathrm{~km} / \mathrm{h}$.

Pressure

Pressure is force \div area
Pressure is usually measured in:
Newtons per square metre $\quad \mathrm{N} / \mathrm{m}^{2}$

The formula can also be rearranged to give
Force $=$ pressure \times area
Area $=$ Force \div pressure

Increase and decrease by a percentage

Find the percentage you are looking for and then for an increase add it to the original value or for a decrease subtract it from the original value.
e.g. Increase $£ 120$ by 30%.
10% of $£ 120$ is $120 \div 10=£ 12$
30% is $10 \% \times 3=£ 12 \times 3=£ 36$
Therefore the new value is $£ 120+£ 36=£ 156$
e.g. Decrease $£ 72$ by 71%

Therefore the new value is $£ 72-£ 51.12=£ 20.88$

Converting between fractions, decimals and σ_{0} s
Any fraction can be written as a decimal or as a 70 and vice versa.

Fraction	Decimal	$\% 0$	Fraction	Decimal	$\%_{0}$
$\frac{1}{2}$	0.5	50%	$\frac{1}{1}$	1	100%
$\frac{1}{4}$	0.25	25%	$\frac{3}{4}$	0.75	75%
$\frac{1}{10}$	0.1	10%	$\frac{2}{10}$	0.2	20%
$\frac{1}{5}$	0.2	$20 \% 0$	$\frac{2}{5}$	0.4	40%
$\frac{1}{100}$	0.01	$1 \% 0$	$\frac{2}{100}$	0.02	2%
$\frac{1}{3}$	0.3	33.3%	$\frac{2}{3}$	0.6	66.6%

Multipliers

To quickly find a percentage of something, change the percentage into a decimal by dividing by 100. This is the multiplier. Then multiply your value by this decimal.
e.g. Find 18% of 320 .

Multiplier: $18 \div 100=0.18$
This is 18% of 320

$$
0.18 \times 320=57.6^{4}
$$

e.g. Decrease 1820 by 75%
multiplier:
$25 \div 100=0.25$
$0.25 \times 1820=455$
If you decrease
100% by 75%
there is 25% left

Increasing and decreasing by a percentage using

 multipliersThe starting value is always 100\%. An increase takes it over 100\% and a decrease takes it below 100\%. Change the new percentage to a decimal to find the multiplier.
e.g. Increase $£ 210$ by 15%. $100 \%+15 \%=115 \%$.
115% as a decimal is 1.15 . So $£ 210 \times 1.15=£ 241.50$
e.g. Decrease $£ 210$ by $15 \% \quad 100 \%-15 \%=85 \%$
85% as a decimal is 0.85 . So $£ 210 \times 0.85=£ 178.50$

Writing one number as a percentage of another

Divide the first number by the second to turn into a decimal then multiply by 100 to change into a percentage.
e.g. Simon scores 30 out of 75 in a test. What percentage is this?

$$
\frac{30}{75} \times 100=40 \%
$$

