Y10 Maths Knowledge Organiser Foundation Tier: Ratio and Proportion

What must I be able to do?	Key vocabulary	
New content: complete calculations from a given ratio and partial information > Mathswatch 38,39,106,165 (GCSE) Calculate speed, distance or time when given the other 2 bits of information > Mathswatch 142 (GCSE) \square Recognise and solve problems which involve direct proportion > Mathswatch 42 (GCSE) \square Use comparative values to solve best value problems > Mathswatch 41 (GCSE)	Unitary	The unitary method is a technigue which is used for solving a problem by finding the value of a single unit
	Best value	compare the price of the same amount of an item. The item that is cheaper for the same quantity is better value for money.
	speed	How fast an object is travelling. The units combine distance and time.
	Direct proportion	As one value increases, the other increases at the same rate.

Equivalent ratios

Ratios can be simplified by dividing by a common factor e.g.

$$
\div 5\left\{\begin{array}{c}
25: 10: 15 \\
5: 5 \\
5: 2: 3
\end{array}\right) \div 5
$$

They can also be simplified to 1:n or n:1 by dividing by an appropriate value

The only time we allow a decimal in a ratio is when it is the " n "

Best value using a unitary method

For these questions, scale the quantity down to 1 (also known as the unitary method) then compare.

	Brand A	Brand B	
	4009	7509	
Brand A	£2.56	$£ 5.10$	Brand B

$£ 0.0064$ is smaller than $£ 0.0068$ so Br and A is better value

Sharing in a ratio

e.g. Marcus and wayne share $£ 4500$ in the ratio $4: 5$

So Marcus gets $£ 500 \times 4=£ 2000$
And wayne gets $£ 500 \times 5=£ 2500$
e.g. Kate and chloe both have young children and have bought a large quantity of nappies in the ratio $3: 7$

Kate has bought 210 nappies.
How many has chloe bought?

So one part is worth $210 \div 3=70$ nappies
Chloe has 7 parts so has a total of $70 \times 7=490$ nappies

Speed
Speed $=$ distance \div time
Speed is usually measured in:
Kilometres per hour km / h
Miles perhour mph
Metres per second m / s

The formula can also be rearranged to give:
Time $=$ distance \div speed
Distance $=$ speed x time

Questions involving speed will often talk about 'average speed'. Objects rarely travel at a constant speed and instead speed up and slow down during the journey. To get around this we often use the average speed of the journey instead.

Converting units of speed

This is usually best done in stages.
e.g. Convert $60 \mathrm{~km} / \mathrm{h}$ into m / s

1000 m in a km	$60 \mathrm{~km} / \mathrm{h}=60,000 \mathrm{~m} / \mathrm{h}$	$(\times 1000)$
60 minutes in an hour	$60,000 \mathrm{~m} / \mathrm{h}=1000 \mathrm{~m} / \mathrm{min}$	$(\div 60)$
60 seconds in an hour	$1000 \mathrm{~m} / \mathrm{min}=16.67 \mathrm{~m} / \mathrm{s}(2$ d.p. $)$	$(\div 60)$

Problem solving with speed

On the first part of the journey a car travels 160 km in 3 hours. On the second part of the journey the car travels at $70 \mathrm{~km} / \mathrm{h}$ for 2 hours.
What is the average speed of the journey?
During the second part of the journey the car travels:

$$
\text { Distance }=\text { speed } x \text { time }=70 \times 2=140 \mathrm{~km} \text {. }
$$

So total distance $=140+160=300 \mathrm{~km}$.
And total time $=3+2=5$ hours.
Average speed $=$ total distance \div total time $=300 \div 5=60 \mathrm{~km} / \mathrm{h}$.

